Abbott, L.F., & Nelson, S.B. (2000). Synaptic plasticity: taming the beast. Nature Neuroscience, 3(11), 1178–1183. http://www.nature.com/articles/nn1100_1178 http://doi.org/10.1038/81453
Abbott, L.F., Varela, J.A., Sen, K., & Nelson, S.B. (1997). Synaptic depression and cortical gain control. Science, 275, 220.
Abdi, A., Mallet, N., Mohamed, F.Y., Sharott, A., Dodson, P.D., Nakamura, K.C., Suri, S., Avery, S.V., Larvin, J.T., Garas, F.N., Garas, S.N., Vinciati, F., Morin, S., Bezard, E., Baufreton, J., & Magill, P.J. (2015). Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. Journal of Neuroscience, 35, 6667–6688. https://www.jneurosci.org/content/35/17/6667 http://doi.org/10.1523/JNEUROSCI.4662-14.2015
Abudukeyoumu, N., Hernandez-Flores, T., Garcia-Munoz, M., & Arbuthnott, G.W. (2019). Cholinergic modulation of striatal microcircuits. European Journal of Neuroscience, 49, 604–622. https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.13949 http://doi.org/10.1111/ejn.13949
Ackley, D.H., Hinton, G.E., & Sejnowski, T.J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147–169.
Adelman, J.P., Maylie, J., & Sah, P. (2012). Small-conductance Ca2+-activated K+ channels: form and function. Annual Review of Physiology, 74, 245–269. http://doi.org/10.1146/annurev-physiol-020911-153336
Agrochao, M., Tanaka, R., Salazar-Gatzimas, E., & Clark, D.A. (2020). Mechanism for analogous illusory motion perception in flies and humans. Proceedings of the National Academy of Sciences, 117, 23044–23053. https://www.pnas.org/doi/abs/10.1073/pnas.2002937117 http://doi.org/10.1073/pnas.2002937117
Ahrens, A.M., Meyer, P.J., Ferguson, L.M., Robinson, T.E., & Aldridge, J.W. (2016). Neural activity in the ventral pallidum encodes variation in the incentive value of a reward cue. The Journal of Neuroscience, 36, 7957–7970. http://www.jneurosci.org/content/36/30/7957 http://doi.org/10.1523/JNEUROSCI.0736-16.2016
Aizenman, C.D., Huang, E.J., Manis, P.B., & Linden, D.J. (2000). Use-dependent changes in synaptic strength at the Purkinje cell to deep nuclear synapse. In Progress in Brain Research (pp. 257–273). Elsevier. https://www.sciencedirect.com/science/article/pii/S0079612300240223 http://doi.org/10.1016/S0079-6123(00)24022-3
Aizi, R. (2023). How does GPT-3 spend its 175B parameters? https://www.lesswrong.com/posts/3duR8CrvcHywrnhLo/how-does-gpt-3-spend-its-175b-parameters
Akhlaghpour, H., Wiskerke, J., Choi, J.Y., Taliaferro, J.P., Au, J., & Witten, I.B. (2016). Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory. eLife, 5, e19507. https://doi.org/10.7554/eLife.19507 http://doi.org/10.7554/eLife.19507
Albin, R.L., Young, A.B., & Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–375.
Albrecht, J., Fetterman, A.J., Fogelman, B., Kitanidis, E., Wróblewski, B., Seo, N., Rosenthal, M., Knutins, M., Polizzi, Z., Simon, J.B., & Qiu, K. (2022). Avalon: A Benchmark for RL Generalization Using Procedurally Generated Worlds. http://arxiv.org/abs/2210.13417 http://doi.org/10.48550/arXiv.2210.13417
Albus, J.S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61. http://www.sciencedirect.com/science/article/B6VHX-45F52M2-J8/2/bba55f65c1bf9b826444584ec64ee6c3
Albus, J.S. (1975). A new approach to manipulator control: the cerebellar model articulation controller (CMAC). Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 97, 220–227.
Alexander, W.H., & Brown, J.W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338–1344. http://www.ncbi.nlm.nih.gov/pubmed/21926982
Alexander, G.E., & Crutcher, M.D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13, 266–271. http://www.sciencedirect.com/science/article/pii/016622369090107L http://doi.org/10.1016/0166-2236(90)90107-L
Alexander, G., DeLong, M., & Strick, P. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381. http://www.ncbi.nlm.nih.gov/pubmed/3085570
Alloway, K.D., Smith, J.B., & Watson, G.D.R. (2014). Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. Journal of Neurophysiology, 111, 36–50. https://journals.physiology.org/doi/full/10.1152/jn.00399.2013 http://doi.org/10.1152/jn.00399.2013
Almeida, L.B. (1987). A Learning Rule for Asynchronous Perceptrons with Feedback in a Combinatorial Environment. In M. Caudil, & C. Butler (Eds.), Proceedings of the IEEE First International Conference on Neural Networks San Diego, CA (pp. 609–618).
Ananth, M.R., Rajebhosale, P., Kim, R., Talmage, D.A., & Role, L.W. (2023). Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nature Reviews Neuroscience, 1–19. https://www.nature.com/articles/s41583-023-00677-x http://doi.org/10.1038/s41583-023-00677-x
Anderson, J.R., & Lebiere, C. (1998). The Atomic Components of Thought (1 ed). Lawrence Erlbaum Associated, Publishers.
Ando, T., Ueda, M., Luo, Y., & Sugihara, I. (2020). Heterogeneous vestibulocerebellar mossy fiber projections revealed by single axon reconstruction in the mouse. Journal of Comparative Neurology, 528, 1775–1802. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24853 http://doi.org/10.1002/cne.24853
Angelucci, A., & Bressloff, P.C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. In S.L.M. S. Martinez-Conde (Ed.), Progress in Brain Research (pp. 93–120). Elsevier. http://www.sciencedirect.com/science/article/pii/S0079612306540051 http://doi.org/10.1016/S0079-6123(06)54005-1
Ankri, L., Husson, Z., Pietrajtis, K., Proville, R., Léna, C., Yarom, Y., Dieudonné, S., & Uusisaari, M.Y. (2015). A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. eLife, 4, e06262. https://doi.org/10.7554/eLife.06262 http://doi.org/10.7554/eLife.06262
Apps, R., & Hawkes, R. (2009). Cerebellar cortical organization: a one-map hypothesis. Nature Reviews Neuroscience, 10, 670–681. https://www.nature.com/articles/nrn2698 http://doi.org/10.1038/nrn2698
Arber, S., & Costa, R.M. (2022). Networking brainstem and basal ganglia circuits for movement. Nature Reviews Neuroscience, 23(6), 342–360. https://www.nature.com/articles/s41583-022-00581-w http://doi.org/10.1038/s41583-022-00581-w
Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science, 273, 1868–1871. http://www.ncbi.nlm.nih.gov/pubmed/8791593
Arnsten, A.F.T., Wang, M.J., & Paspalas, C.D. (2012). Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron, 76, 223–239. http://www.sciencedirect.com/science/article/pii/S0896627312008045 http://doi.org/10.1016/j.neuron.2012.08.038
Ashby, F.G., Ell, S.W., Valentin, V.V., & Casale, M.B. (2005). FROST: A distributed neurocomputational model of working memory maintenance. Journal of Cognitive Neuroscience, 17, 1728–1743. https://doi.org/10.1162/089892905774589271 http://doi.org/10.1162/089892905774589271
Aston-Jones, G., & Cohen, J.D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. http://www.ncbi.nlm.nih.gov/pubmed/16022602
Atallah, H.E., McCool, A.D., Howe, M.W., & Graybiel, A.M. (2014). Neurons in the ventral striatum exhibit cell-type specific representations of outcome during learning. Neuron,
Baars, B.J. (2002). The conscious access hypothesis: origins and recent evidence. Trends in cognitive sciences, 6, 47–52. http://www.ncbi.nlm.nih.gov/pubmed/11849615
Baddeley, A.D., & Hitch, G.J. (1974). Working memory. In G. Bower (Ed.), The Psychology of Learning and Motivation (pp. 47–89). Academic Press.
Baldi, P., & Hornik, K. (1989). Neural networks and principlal components analysis: Learning from examples without local minima. Neural Networks, 2, 53–58.
Balleine, B.W., & Dickinson, A. (1998). Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology, 37, 407–419. http://www.ncbi.nlm.nih.gov/pubmed/9704982
Barak, O., & Tsodyks, M. (2014). Working models of working memory. Current Opinion in Neurobiology, 25, 20–24. http://www.sciencedirect.com/science/article/pii/S0959438813002158 http://doi.org/10.1016/j.conb.2013.10.008
Bar, M., Kassam, K., Ghuman, A., Boshyan, J., & Schmidt, A. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103, 449–454. http://www.pnas.org/cgi/content/abstract/103/2/449
Barlow, H. (1961). Possible principles underlying the transformation of sensory messages. Sensory Communication, 217–234. https://cir.nii.ac.jp/crid/1570291225093500032
Barter, J.W., Li, S., Sukharnikova, T., Rossi, M.A., Bartholomew, R.A., & Yin, H.H. (2015). Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior. Journal of Neuroscience, 35, 2703–2716. https://www.jneurosci.org/content/35/6/2703 http://doi.org/10.1523/JNEUROSCI.3245-14.2015
Barto, A.G. (1995). Adaptive Critics and the Basal Ganglia. In J.C. Houk, J.L. Davis, & D.G. Beiser (Eds.), Models of Information Processing in the Basal Ganglia (pp. 215–232). MIT Press.
Barto, A.G., & Mahadevan, S. (2003). Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems, 13, 341–379. https://link.springer.com/article/10.1023/A:1025696116075 http://doi.org/10.1023/A:1025696116075
Barto, A.G., Sutton, R.S., & Anderson, C.W. (1983). Neuronlike adaptive elements that can solve difficult learning control problems. IEEE transactions on Systems, Man, & Cybernetics, 13, 834–846.
Basile, G.A., Quartu, M., Bertino, S., Serra, M.P., Boi, M., Bramanti, A., Anastasi, G.P., Milardi, D., & Cacciola, A. (2021). Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Structure and Function, 226, 69–91. https://doi.org/10.1007/s00429-020-02171-x http://doi.org/10.1007/s00429-020-02171-x
Basso, M.A..., & Wurtz, R.H. (2002). Neuronal activity in substantia nigra pars reticulata during target selection. Journal of Neuroscience, 22, 1883–1894. http://www.ncbi.nlm.nih.gov/pubmed/11880518
Bastian, A.J. (2006). Learning to predict the future: the cerebellum adapts feedforward movement control. Current opinion in neurobiology, 16, http://www.ncbi.nlm.nih.gov/pubmed/17071073
Batista, A.P., Buneo, C.A., Snyder, L.H., & Andersen, R.A. (1999). Reach plans in eye-centered coordinates. Science (New York, N.Y.), 285, 257. http://www.ncbi.nlm.nih.gov/pubmed/10398603
Baumel, Y., Jacobson, G.A., & Cohen, D. (2009). Implications of functional anatomy on information processing in the deep cerebellar nuclei. Frontiers in Cellular Neuroscience, 3, https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/neuro.03.014.2009/full http://doi.org/10.3389/neuro.03.014.2009
Bayer, K.U., & Giese, K.P. (2025). A revised view of the role of CaMKII in learning and memory. Nature Neuroscience, 28, 24–34. https://www.nature.com/articles/s41593-024-01809-x http://doi.org/10.1038/s41593-024-01809-x
Bayer, K.U., & Schulman, H. (2019). CaM Kinase: Still Inspiring at 40. Neuron, 103, 380–394. https://www.sciencedirect.com/science/article/pii/S0896627319304866 http://doi.org/10.1016/j.neuron.2019.05.033
Bear, M.F., & Malenka, R.C. (1994). Synaptic plasticity: LTP and LTD. Current Opinion in Neurobiology, 4, 389–399. https://www.sciencedirect.com/science/article/pii/0959438894901015 http://doi.org/10.1016/0959-4388(94)90101-5
Bednar, J.A. (2012). Building a mechanistic model of the development and function of the primary visual cortex. Journal of physiology, Paris, 106, http://www.ncbi.nlm.nih.gov/pubmed/22343520
Bednar, J.A., & Miikkulainen, R. (2003). Self-organization of spatiotemporal receptive fields and laterally connected direction and orientation maps. Neurocomputing, 52, 473–480. http://www.sciencedirect.com/science/article/pii/S092523120200735X http://doi.org/10.1016/S0925-2312(02)00735-X
Beiser, D.G., & Houk, J.C. (1998). Model of cortical-basal ganglionic processing: Encoding the serial order of sensory events. Journal of Neurophysiology, 79, 3168–3188. http://www.ncbi.nlm.nih.gov/pubmed/9636117
Beitzel, C.S., Houck, B.D., Lewis, S.M., & Person, A.L. (2017). Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice. Journal of Neuroscience, 37, 10085–10096. https://www.jneurosci.org/content/37/42/10085 http://doi.org/10.1523/JNEUROSCI.1093-17.2017
Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. Nature Communications, 11(1), 3625. https://www.nature.com/articles/s41467-020-17236-y http://doi.org/10.1038/s41467-020-17236-y
Bell, C.C., Han, V., & Sawtell, N.B. (2008). Cerebellum-Like Structures and Their Implications for Cerebellar Function. Annual Review of Neuroscience, 31, 1–24. https://www.annualreviews.org/content/journals/10.1146/annurev.neuro.30.051606.094225 http://doi.org/10.1146/annurev.neuro.30.051606.094225
Bellman, R. (1957). Dynamic Programming. Princeton University Press.
Benda, J. (2021). Neural adaptation. Current Biology, 31, R110-R116. https://www.cell.com/current-biology/abstract/S0960-9822(20)31767-X http://doi.org/10.1016/j.cub.2020.11.054
Benda, J., Maler, L., & Longtin, A. (2010). Linear Versus Nonlinear Signal Transmission in Neuron Models With Adaptation Currents or Dynamic Thresholds. Journal of Neurophysiology, 104, 2806–2820. http://jn.physiology.org/content/104/5/2806 http://doi.org/10.1152/jn.00240.2010
Bengtsson, F., Ekerot, C., & Jörntell, H. (2011). In Vivo Analysis of Inhibitory Synaptic Inputs and Rebounds in Deep Cerebellar Nuclear Neurons. PLOS ONE, 6, e18822. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018822 http://doi.org/10.1371/journal.pone.0018822
Beniaguev, D., Segev, I., & London, M. (2021). Single cortical neurons as deep artificial neural networks. Neuron, https://www.sciencedirect.com/science/article/pii/S0896627321005018 http://doi.org/10.1016/j.neuron.2021.07.002
Berendse, H., Galis-De Graaf, Y., & Groenewegen, H. (1992). Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. The Journal of Comparative Neurology, 316, 314–347. http://dx.doi.org/10.1002/cne.903160305
Berkley, K.J., & Hand, P.J. (1978). Projections to the inferior olive of the cat II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclel. Journal of Comparative Neurology, 180, 253–264. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.901800205 http://doi.org/10.1002/cne.901800205
Berthier, N.E., & Moore, J.W. (1986). Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Experimental Brain Research, 63, 341–350. https://doi.org/10.1007/BF00236851 http://doi.org/10.1007/BF00236851
Beuriat, P., Cristofori, I., Richard, N., Bardi, L., Loriette, C., Szathmari, A., Di Rocco, F., Leblond, P., Frappaz, D., Faure-Conter, C., Claude, L., Mottolese, C., & Desmurget, M. (2020). Cerebellar lesions at a young age predict poorer long-term functional recovery. Brain Communications, 2, fcaa027. https://doi.org/10.1093/braincomms/fcaa027 http://doi.org/10.1093/braincomms/fcaa027
Beurrier, C., Bioulac, B., Audin, J., & Hammond, C. (2001). High-Frequency Stimulation Produces a Transient Blockade of Voltage-Gated Currents in Subthalamic Neurons. Journal of Neurophysiology, 85, 1351–1356. https://journals.physiology.org/doi/full/10.1152/jn.2001.85.4.1351 http://doi.org/10.1152/jn.2001.85.4.1351
Bevan, M.D., Magill, P.J., Terman, D., Bolam, J.P., & Wilson, C.J. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends in Neurosciences, 25, 525–531. http://www.ncbi.nlm.nih.gov/pubmed/12220881
Bhalla, U.S., & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, http://www.science.org/doi/abs/10.1126/science.283.5400.381 http://doi.org/10.1126/science.283.5400.381
Bienenstock, E.L., Cooper, L.N., & Munro, P.W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience, 2, 32–48. http://www.ncbi.nlm.nih.gov/pubmed/7054394
Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of Neuroscience, 18, 10464–10472. http://www.jneurosci.org/content/18/24/10464
Biswas, M.S., Luo, Y., Sarpong, G.A., & Sugihara, I. (2019). Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. Journal of Comparative Neurology, 527, 1966–1985. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24662 http://doi.org/10.1002/cne.24662
Bittner, K.C., Grienberger, C., Vaidya, S.P., Milstein, A.D., Macklin, J.J., Suh, J., Tonegawa, S., & Magee, J.C. (2015). Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nature Neuroscience, 18(8), 1133–1142. https://www.nature.com/articles/nn.4062 http://doi.org/10.1038/nn.4062
Bittner, K.C., Milstein, A.D., Grienberger, C., Romani, S., & Magee, J.C. (2017). Behavioral time scale synaptic plasticity underlies CA1 place fields. Science, 357, 1033–1036. http://science.sciencemag.org/content/357/6355/1033 http://doi.org/10.1126/science.aan3846
Blenkinsop, T.A., & Lang, E.J. (2011). Synaptic Action of the Olivocerebellar System on Cerebellar Nuclear Spike Activity. Journal of Neuroscience, 31, 14708–14720. https://www.jneurosci.org/content/31/41/14708 http://doi.org/10.1523/JNEUROSCI.3323-11.2011
Bliss, T.V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of physiology, 232, 331–356. http://www.ncbi.nlm.nih.gov/pubmed/4727084
Bodznick, D., Montgomery, J.C., & Carey, M. (1999). Adaptive mechanisms in the elasmobranch hindbrain. Journal of Experimental Biology, 202, 1357–1364. https://doi.org/10.1242/jeb.202.10.1357 http://doi.org/10.1242/jeb.202.10.1357
Boele, H., Koekkoek, S.K.E., & De Zeeuw, C.I. (2010). Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Frontiers in Cellular Neuroscience, 3, https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/neuro.03.019.2009/full http://doi.org/10.3389/neuro.03.019.2009
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J.D. (2006). The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113, 700–765. http://www.ncbi.nlm.nih.gov/pubmed/17014301
Bogacz, R., & Gurney, K. (2007). The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Computation, 19, 442–477. http://www.ncbi.nlm.nih.gov/pubmed/17206871
Bogacz, R., Moraud, E.M., Abdi, A., Magill, P.J., & Baufreton, J. (2016). Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection. PLOS Computational Biology, 12, e1005004. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005004 http://doi.org/10.1371/journal.pcbi.1005004
Bolkan, S.S., Stujenske, J.M., Parnaudeau, S., Spellman, T.J., Rauffenbart, C., Abbas, A.I., Harris, A.Z., Gordon, J.A., & Kellendonk, C. (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nature Neuroscience, 20, 987–996. https://www.nature.com/articles/nn.4568 http://doi.org/10.1038/nn.4568
Bonnan, A., Zhang, K., Gaffield, M.A., & Christie, J.M. (2023). Expression of a Form of Cerebellar Motor Memory Requires Learned Alterations to the Activity of Inhibitory Molecular Layer Interneurons. Journal of Neuroscience, 43, 601–612. https://www.jneurosci.org/content/43/4/601 http://doi.org/10.1523/JNEUROSCI.0731-22.2022
Borst, J.G.G. (2010). The low synaptic release probability in vivo. Trends in Neurosciences, 33, 259–266. http://www.sciencedirect.com/science/article/pii/S0166223610000457 http://doi.org/10.1016/j.tins.2010.03.003
Bosch-Bouju, C., Hyland, B.I., & Parr-Brownlie, L.C. (2013). Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Frontiers in Computational Neuroscience, 7, https://www.frontiersin.org/articles/10.3389/fncom.2013.00163/full http://doi.org/10.3389/fncom.2013.00163
Bosch, M., Castro, J., Saneyoshi, T., Matsuno, H., Sur, M., & Hayashi, Y. (2014). Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation. Neuron, 82, 444–459. https://www.cell.com/neuron/abstract/S0896-6273(14)00251-7 http://doi.org/10.1016/j.neuron.2014.03.021
Bostan, A.C., Dum, R.P., & Strick, P.L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences, 107, 8452–8456. https://www.pnas.org/doi/abs/10.1073/pnas.1000496107 http://doi.org/10.1073/pnas.1000496107
Boudreau, C.E., & Ferster, D. (2005). Short-Term Depression in Thalamocortical Synapses of Cat Primary Visual Cortex. Journal of Neuroscience, 25, 7179–7190. https://www.jneurosci.org/content/25/31/7179 http://doi.org/10.1523/JNEUROSCI.1445-05.2005
Bowmaker, J.K., & Dartnall, H.J. (1980). Visual pigments of rods and cones in a human retina. The Journal of Physiology, 298, 501–511. https://onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1980.sp013097 http://doi.org/10.1113/jphysiol.1980.sp013097
Brette, R. (2015). Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain. Frontiers in Systems Neuroscience, 9, 151. https://www.frontiersin.org/article/10.3389/fnsys.2015.00151 http://doi.org/10.3389/fnsys.2015.00151
Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642. http://jn.physiology.org/content/94/5/3637 http://doi.org/10.1152/jn.00686.2005
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris, F.C., & Others (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23, 349–398. http://www.ncbi.nlm.nih.gov/pubmed/17629781
Brody, C.D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13, 204–211. http://www.ncbi.nlm.nih.gov/pubmed/12744975
Brombas, A., Kalita-de Croft, S., Cooper-Williams, E.J., & Williams, S.R. (2017). Dendro-dendritic cholinergic excitation controls dendritic spike initiation in retinal ganglion cells. Nature Communications, 8, 15683. https://www.nature.com/articles/ncomms15683 http://doi.org/10.1038/ncomms15683
Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal on Robotics and Automation, 2, 14–23. http://doi.org/10.1109/JRA.1986.1087032
Brooks, J.X., Carriot, J., & Cullen, K.E. (2015). Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nature Neuroscience, 18, 1310–1317. https://www.nature.com/articles/nn.4077 http://doi.org/10.1038/nn.4077
Brooks, J.X., & Cullen, K.E. (2013). The Primate Cerebellum Selectively Encodes Unexpected Self-Motion. Current Biology, 23, 947–955. https://www.cell.com/current-biology/abstract/S0960-9822(13)00437-5 http://doi.org/10.1016/j.cub.2013.04.029
Brown, J.W., Bullock, D., & Grossberg, S. (2004). How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks, 17, 471–510. http://www.ncbi.nlm.nih.gov/pubmed/15109680
Brown, J.T., Chan-Palay, V., & Palay, S.L. (1977). A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. Journal of Comparative Neurology, 176, 1–22. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.901760102 http://doi.org/10.1002/cne.901760102
Brunel, N., & Wang, X.J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience, 11, 63–85. http://www.ncbi.nlm.nih.gov/pubmed/11524578
Buchholz, M.O., Guilabert, A.G., Ehret, B., & Schuhknecht, G.F.P. (2023). How synaptic strength, short-term plasticity, and input synchrony contribute to neuronal spike output. PLOS Computational Biology, 19, e1011046. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011046 http://doi.org/10.1371/journal.pcbi.1011046
Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., & Desimone, R. (2011). Laminar differences in gamma and alpha coherence in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 108, 11262–11267. http://www.ncbi.nlm.nih.gov/pubmed/21690410
Buonomano, D.V., & Mauk, M.D. (1994). Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses. Neural Computation, 6, 38–55.
Butler, A.B. (2008). Evolution of the thalamus: a morphological and functional review. Thalamus & Related Systems, 4, 35–58. https://www.cambridge.org/core/journals/thalamus-and-related-systems/article/abs/evolution-of-the-thalamus-a-morphological-and-functional-review/B0D500C7591B6FC801B600D8C43EBD9B http://doi.org/10.1017/S1472928808000356
Cain, S.M., & Snutch, T.P. (2012). Voltage-Gated Calcium Channels in Epilepsy. In J.L. Noebels, M. Avoli, M.A. Rogawski, R.W. Olsen, & A.V. Delgado-Escueta (Eds.), Jasper's Basic Mechanisms of the Epilepsies (4th ed.). National Center for Biotechnology Information (US) http://www.ncbi.nlm.nih.gov/books/NBK98147/
Campbell, D., Rane, S., Giallanza, T., De Sabbata, N., Ghods, K., Joshi, A., Ku, A., Frankland, S.M., Griffiths, T.L., Cohen, J.D., & Webb, T. (2024). Understanding the Limits of Vision Language Models Through the Lens of the Binding Problem. Advances in Neural Information Processing Systems, 37, 113436–113460. https://proceedings.neurips.cc/paper_files/paper/2024/hash/cdcc6d47c1627350014a3076112ab824-Abstract-Conference.html
Cardin, J.A. (2018). Inhibitory interneurons regulate temporal precision and correlations in cortical circuits. Trends in Neurosciences, 41, 689–700. https://www.sciencedirect.com/science/article/pii/S0166223618302078 http://doi.org/10.1016/j.tins.2018.07.015
Carey, M.R. (2011). Synaptic mechanisms of sensorimotor learning in the cerebellum. Current Opinion in Neurobiology, 21, 609–615. https://www.sciencedirect.com/science/article/pii/S0959438811001206 http://doi.org/10.1016/j.conb.2011.06.011
Casey, B.J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28, 62–77. https://www.sciencedirect.com/science/article/pii/S0273229707000494 http://doi.org/10.1016/j.dr.2007.08.003
Catanese, J., & Jaeger, D. (2021). Premotor ramping of thalamic neuronal activity is modulated by nigral inputs and contributes to control the timing of action release. Journal of Neuroscience, 41, 1878–1891. https://www.jneurosci.org/content/41/9/1878 http://doi.org/10.1523/JNEUROSCI.1204-20.2020
Chan-Palay, V. (1977). The Cerebellar Dentate Nucleus. In V. Chan-Palay (Ed.), Cerebellar Dentate Nucleus: Organization, Cytology and Transmitters (pp. 1–24). Springer. https://doi.org/10.1007/978-3-642-66498-4_1 http://doi.org/10.1007/978-3-642-66498-4_1
Chater, N., Oaksford, M., Hahn, U., & Heit, E. (2010). Bayesian models of cognition. WIREs Cognitive Science, 1, 811–823. https://onlinelibrary.wiley.com/doi/abs/10.1002/wcs.79 http://doi.org/10.1002/wcs.79
Chen, X., Cai, Q., Zhou, J., Pleasure, S.J., Schulman, H., Zhang, M., & Nicoll, R.A. (2024). CaMKII autophosphorylation is the only enzymatic event required for synaptic memory. Proceedings of the National Academy of Sciences, 121, e2402783121. https://www.pnas.org/doi/abs/10.1073/pnas.2402783121 http://doi.org/10.1073/pnas.2402783121
Cheng, D.T., Jacobson, S.W., Jacobson, J.L., Molteno, C.D., Stanton, M.E., & Desmond, J.E. (2015). Eyeblink Classical Conditioning in Alcoholism and Fetal Alcohol Spectrum Disorders. Frontiers in Psychiatry, 6, https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2015.00155/full http://doi.org/10.3389/fpsyt.2015.00155
Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M.L., & Saphra, N. (2025). Sudden Drops in the Loss: Syntax Acquisition, Phase Transitions, and Simplicity Bias in MLMs. http://arxiv.org/abs/2309.07311 http://doi.org/10.48550/arXiv.2309.07311
Chevalier, G., & Deniau, J.M. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends in Neurosciences, 13, 277–280. http://www.ncbi.nlm.nih.gov/pubmed/1695403
Chollet, F. (2019). On the measure of intelligence. arXiv:1911.01547 [cs], http://arxiv.org/abs/1911.01547
Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press.
Chopek, J.W., Hultborn, H., & Brownstone, R.M. (2019). Multistable properties of human subthalamic nucleus neurons in Parkinson’s disease. Proceedings of the National Academy of Sciences, 116, 24326–24333. https://www.pnas.org/doi/abs/10.1073/pnas.1912128116 http://doi.org/10.1073/pnas.1912128116
Cisek, P. (2021). Evolution of behavioural control from chordates to primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 377, 20200522. https://royalsocietypublishing.org/doi/full/10.1098/rstb.2020.0522 http://doi.org/10.1098/rstb.2020.0522
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–204. http://www.ncbi.nlm.nih.gov/pubmed/23663408
Clascá, F., Rubio‐Garrido, P., & Jabaudon, D. (2012). Unveiling the diversity of thalamocortical neuron subtypes. European Journal of Neuroscience, 35, 1524–1532. http://onlinelibrary.wiley.com/doi/abs/10.1111/j.1460-9568.2012.08033.x http://doi.org/10.1111/j.1460-9568.2012.08033.x
Clayton, M.S., Yeung, N., & Kadosh, R.C. (2018). The many characters of visual alpha oscillations. European Journal of Neuroscience, 48, 2498–2508. http://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.13747 http://doi.org/10.1111/ejn.13747
Cleeremans, A., & McClelland, J.L. (1991). Learning the structure of event sequences. Journal of Experimental Psychology: General, 120, 235–253.
Coesmans, M., Weber, J.T., De Zeeuw, C.I., & Hansel, C. (2004). Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron, 44, http://www.ncbi.nlm.nih.gov/pubmed/15541316
Cohen, J.D., Dunbar, K., & McClelland, J.L. (1990). On the control of automatic processes: A parallel distributed processing model of the Stroop effect. Psychological Review, 97, 332–361.
Cohen, J.D., Romero, R.D., Farah, M.J., & Servan-Schreiber, D. (1994). Mechanisms of Spatial Attention: The Relation of Macrostructure To Microstructure in Parietal Neglect. Journal of Cognitive Neuroscience, 6, 377–387.
Coizet, V., Graham, J.H., Moss, J., Bolam, J.P., Savasta, M., McHaffie, J.G., Redgrave, P., & Overton, P.G. (2009). Short-Latency Visual Input to the Subthalamic Nucleus Is Provided by the Midbrain Superior Colliculus. Journal of Neuroscience, 29, 5701–5709. https://www.jneurosci.org/content/29/17/5701 http://doi.org/10.1523/JNEUROSCI.0247-09.2009
Collingridge, G.L., & Bliss, T.V.P. (1987). NMDA Receptors — Their Role in Long-Term Potentiation. Trends in Neurosciences, 10, 288–293.
Collingridge, G.L., Kehl, S.J., & McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. The Journal of physiology, 334, 33–46. http://www.ncbi.nlm.nih.gov/pubmed/6306230
Collins, A.G.E., & Frank, M.J. (2013). Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychological Review, 120, 190–229. http://www.ncbi.nlm.nih.gov/pubmed/23356780
Collins, A.G.E., & Frank, M.J. (2014). Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychological Review, 121, 337–366. http://www.ncbi.nlm.nih.gov/pubmed/25090423
Conway, B.R. (2001). Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). The Journal of neuroscience, 21, http://www.ncbi.nlm.nih.gov/pubmed/11306629
Conway, B.R., Kitaoka, A., Yazdanbakhsh, A., Pack, C.C., & Livingstone, M.S. (2005). Neural Basis for a Powerful Static Motion Illusion. Journal of Neuroscience, 25, 5651–5656. https://www.jneurosci.org/content/25/23/5651 http://doi.org/10.1523/JNEUROSCI.1084-05.2005
Cook, S.G., Buonarati, O.R., Coultrap, S.J., & Bayer, K.U. (2021). CaMKII holoenzyme mechanisms that govern the LTP versus LTD decision. Science Advances, https://www.science.org/doi/abs/10.1126/sciadv.abe2300 http://doi.org/10.1126/sciadv.abe2300
Cools, R., & Arnsten, A.F.T. (2022). Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology, 47(1), 309–328. https://www.nature.com/articles/s41386-021-01100-8 http://doi.org/10.1038/s41386-021-01100-8
Cooper, S.J. (2005). Donald O. Hebb's synapse and learning rule: a history and commentary. Neuroscience & Biobehavioral Reviews, 28, 851–874. https://www.sciencedirect.com/science/article/pii/S0149763404000995 http://doi.org/10.1016/j.neubiorev.2004.09.009
Corkin, S. (2002). What's new with the amnesic patient H. M.? Nature Reviews Neuroscience, 3, 153–160.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273 – 297.
Coslett, H.B., & Saffran, E. (1991). Simultanagnosia. To see but not two see. Brain, 114, 1523–1545.
Coultrap, S.J., Freund, R.K., O’Leary, H., Sanderson, J.L., Roche, K.W., Dell’Acqua, M.L., & Bayer, K.U. (2014). Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Cell Reports, 6, 431–437. http://www.sciencedirect.com/science/article/pii/S2211124714000060 http://doi.org/10.1016/j.celrep.2014.01.005
Courtney, C.D., Pamukcu, A., & Chan, C.S. (2023). Cell and circuit complexity of the external globus pallidus. Nature Neuroscience, 26(7), 1147–1159. https://www.nature.com/articles/s41593-023-01368-7 http://doi.org/10.1038/s41593-023-01368-7
Crick, F. (1989). The recent excitement about neural networks. Nature, 337, 129–132. http://www.ncbi.nlm.nih.gov/pubmed/2911347
Critcher, C.R., Huber, M., Ho, A.K., & Koleva, S.P. (2009). Political Orientation and Ideological Inconsistencies: (Dis)comfort with Value Tradeoffs. Social Justice Research, 22, 181–205. https://doi.org/10.1007/s11211-009-0096-1 http://doi.org/10.1007/s11211-009-0096-1
Crittenden, J.R., Lacey, C.J., Weng, F., Garrison, C.E., Gibson, D.J., Lin, Y., & Graybiel, A.M. (2017). Striatal Cholinergic Interneurons Modulate Spike-Timing in Striosomes and Matrix by an Amphetamine-Sensitive Mechanism. Frontiers in Neuroanatomy, 11, https://www.frontiersin.org/journals/neuroanatomy/articles/10.3389/fnana.2017.00020/full http://doi.org/10.3389/fnana.2017.00020
Cui, Q., Du, X., Chang, I.Y.M., Pamukcu, A., Lilascharoen, V., Berceau, B.L., García, D., Hong, D., Chon, U., Narayanan, A., Kim, Y., Lim, B.K., & Chan, C.S. (2021). Striatal direct pathway targets Npas1+ pallidal neurons. Journal of Neuroscience, 41, 3966–3987. https://www.jneurosci.org/content/41/18/3966 http://doi.org/10.1523/JNEUROSCI.2306-20.2021
Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., & Costa, R.M. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494, http://www.ncbi.nlm.nih.gov/pubmed/23354054
Cullen, K.E. (2023). Internal models of self-motion: neural computations by the vestibular cerebellum. Trends in Neurosciences, 46, 986–1002. https://www.cell.com/trends/neurosciences/abstract/S0166-2236(23)00207-2 http://doi.org/10.1016/j.tins.2023.08.009
Cutsuridis, V., & Poirazi, P. (2015). A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal–hippocampal loop. Neurobiology of Learning and Memory, 120, 69–83. https://www.sciencedirect.com/science/article/pii/S1074742715000234 http://doi.org/10.1016/j.nlm.2015.02.002
Dacre, J., Colligan, M., Clarke, T., Ammer, J.J., Schiemann, J., Chamosa-Pino, V., Claudi, F., Harston, J.A., Eleftheriou, C., Pakan, J.M.P., Huang, C., Hantman, A.W., Rochefort, N.L., & Duguid, I. (2021). A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron, 109, 2326-2338.e8. https://www.sciencedirect.com/science/article/pii/S0896627321003561 http://doi.org/10.1016/j.neuron.2021.05.016
Daw, N.D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711. http://www.ncbi.nlm.nih.gov/pubmed/16286932
Dayan, P., Hinton, G.E., Neal, R.N., & Zemel, R.S. (1995). The {Helmholtz} machine. Neural Computation, 7, 889–904.
Dean, P., Porrill, J., Ekerot, C., & Jörntell, H. (2010). The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nature Reviews, 11, 30–43. http://www.ncbi.nlm.nih.gov/pubmed/19997115
Debanne, D., & Inglebert, Y. (2023). Spike timing-dependent plasticity and memory. Current Opinion in Neurobiology, 80, 102707. https://www.sciencedirect.com/science/article/pii/S0959438823000326 http://doi.org/10.1016/j.conb.2023.102707
De Gruijl, J.R., Bosman, L.W.J., De Zeeuw, C.I., & De Jeu, M.T.G. (2013). Inferior Olive: All Ins and Outs. In Handbook of the Cerebellum and Cerebellar Disorders (pp. 1013–1058). Springer, Dordrecht. https://link.springer.com/rwe/10.1007/978-94-007-1333-8_43 http://doi.org/10.1007/978-94-007-1333-8_43
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21, 355–361. http://www.sciencedirect.com/science/article/pii/S0166223698012636 http://doi.org/10.1016/S0166-2236(98)01263-6
Dehaene, S., Kerszberg, M., & Changeux, J.P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the United States of America, 95, 14529. http://www.ncbi.nlm.nih.gov/pubmed/9826734
Dehaene, S., Lau, H., & Kouider, S. (2017). What is consciousness, and could machines have it? Science, 358, 486–492. https://www.science.org/doi/abs/10.1126/science.aan8871 http://doi.org/10.1126/science.aan8871
Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255). https://ieeexplore.ieee.org/abstract/document/5206848 http://doi.org/10.1109/CVPR.2009.5206848
Desimone, R. (1996). Neural Mechanisms for Visual Memory and Their Role in Attention. Proceedings of the National Academy of Sciences, 93, 13494–13499. http://www.pnas.org/content/93/24/13494
Desmurget, M., & Turner, R.S. (2010). Motor sequences and the basal ganglia: Kinematics, not habits. Journal of Neuroscience, 30, 7685–7690. https://www.jneurosci.org/content/30/22/7685 http://doi.org/10.1523/JNEUROSCI.0163-10.2010
Destexhe, A., Mainen, Z.F., & Sejnowski, T.J. (1998). Kinetic models of synaptic transmission. Methods in neuronal modeling, 2, 1–25. https://www.csc.kth.se/utbildning/kth/kurser/DD2435/biomod12/kursbunt/f9/KochCh1Destexhe.pdf
Devillez, H., Guyader, N., Curran, T., & O’Reilly, R.C. (2020). The bimodality of saccade duration during the exploration of visual scenes. Visual Cognition, 28, 484–512. https://doi.org/10.1080/13506285.2020.1830325 http://doi.org/10.1080/13506285.2020.1830325
De Zeeuw, C. (2021). Bidirectional learning in upbound and downbound microzones of the cerebellum. Nature Reviews Neuroscience, 22(2), 92–110. https://www.nature.com/articles/s41583-020-00392-x http://doi.org/10.1038/s41583-020-00392-x
De Zeeuw, C.I., & Berrebi, A.S. (1995). Postsynaptic Targets of Purkinje Cell Terminals in the Cerebellar and Vestibular Nuclei of the Rat. European Journal of Neuroscience, 7, 2322–2333. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1460-9568.1995.tb00653.x http://doi.org/10.1111/j.1460-9568.1995.tb00653.x
De Zeeuw, C.I., & Ruigrok, T.J.H. (1994). Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Research, 653, 345–350. https://www.sciencedirect.com/science/article/pii/0006899394904111 http://doi.org/10.1016/0006-8993(94)90411-1
De Zeeuw, C.I., Simpson, J.I., Hoogenraad, C.C., Galjart, N., Koekkoek, S.K., & Ruigrok, T.J. (1998). Microcircuitry and function of the inferior olive. Trends in neurosciences, 21, 391–400. http://www.ncbi.nlm.nih.gov/pubmed/9735947
De Zeeuw, C.I., Van Alphen, A.M., Hawkins, R.K., & Ruigrok, T.J. (1997). Climbing fibre collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive. Neuroscience, 80, 981–986. https://doi.org/10.1016/s0306-4522(97)00249-2 http://doi.org/10.1016/s0306-4522(97)00249-2
Diehl, P.U., & Cook, M. (2015). Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Frontiers in Computational Neuroscience, 9, https://www.frontiersin.org/articles/10.3389/fncom.2015.00099/full http://doi.org/10.3389/fncom.2015.00099
Dietrichs, E., & Walberg, F. (1987). Cerebellar nuclear afferents — where do they originate? Anatomy and Embryology, 177, 165–172. https://doi.org/10.1007/BF00572541 http://doi.org/10.1007/BF00572541
Ding, L., & Gold, J.I. (2013). The basal ganglia’s contributions to perceptual decision making. Neuron, 79, 640–649. https://www.cell.com/neuron/abstract/S0896-6273(13)00666-1 http://doi.org/10.1016/j.neuron.2013.07.042
Dodson, P.D., Larvin, J.T., Duffell, J.M., Garas, F.N., Doig, N.M., Kessaris, N., Duguid, I.C., Bogacz, R., Butt, S.J.B., & Magill, P.J. (2015). Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron, 86, 501–513. http://www.sciencedirect.com/science/article/pii/S0896627315002032 http://doi.org/10.1016/j.neuron.2015.03.007
Doi, T., Fan, Y., Gold, J.I., & Ding, L. (2020). The caudate nucleus contributes causally to decisions that balance reward and uncertain visual information. eLife, 9, e56694. https://elifesciences.org/articles/56694 http://doi.org/10.7554/eLife.56694
Doig, N.M., Magill, P.J., Apicella, P., Bolam, J.P., & Sharott, A. (2014). Cortical and Thalamic Excitation Mediate the Multiphasic Responses of Striatal Cholinergic Interneurons to Motivationally Salient Stimuli. Journal of Neuroscience, 34, 3101–3117. https://www.jneurosci.org/content/34/8/3101 http://doi.org/10.1523/JNEUROSCI.4627-13.2014
Doi, T., Kuroda, S., Michikawa, T., & Kawato, M. (2005). Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar purkinje cells. Journal of Neuroscience, 25, 950–961. https://www.jneurosci.org/content/25/4/950 http://doi.org/10.1523/JNEUROSCI.2727-04.2005
Dolphin, A.C. (2018). Voltage-gated calcium channels: Their discovery, function and importance as drug targets. Brain and Neuroscience Advances, 2, 2398212818794805. https://doi.org/10.1177/2398212818794805 http://doi.org/10.1177/2398212818794805
Dominey, P.F., & Arbib, M.A. (1992). Cortico-subcortical model for generation of spatially accurate sequential saccades. Cerebral Cortex, 2, 153–175.
Dominey, P.F., Arbib, M., & Joseph, J. (1995). A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences. Journal of Cognitive Neuroscience, 7, 311–336.
Dong, J., Wang, L., Sullivan, B.T., Sun, L., Martinez Smith, V.M., Chang, L., Ding, J., Le, W., Gerfen, C.R., & Cai, H. (2025). Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion. Nature Communications, 16, 2710. https://www.nature.com/articles/s41467-025-58007-x http://doi.org/10.1038/s41467-025-58007-x
Doran, G.T. (1981). There's a S.M.A.R.T. way to write managements's goals and objectives. Management Review, 70, 35.
Doucet, A., Freitas, N., & Gordon, N. (Eds.) (2001). Sequential Monte Carlo Methods in Practice. Springer. http://link.springer.com/10.1007/978-1-4757-3437-9 http://doi.org/10.1007/978-1-4757-3437-9
Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974. https://www.sciencedirect.com/science/article/pii/S0893608099000465 http://doi.org/10.1016/S0893-6080(99)00046-5
Driesen, N.R., McCarthy, G., Bhagwagar, Z., Bloch, M., Calhoun, V., D'Souza, D.C., Gueorguieva, R., He, G., Ramachandran, R., Suckow, R.F., Anticevic, A., Morgan, P.T., & Krystal, J.H. (2013). Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Molecular Psychiatry, 18, 1199–1204. https://www.nature.com/articles/mp2012194 http://doi.org/10.1038/mp.2012.194
Duckworth, A., & Gross, J.J. (2014). Self-control and grit: related but separable determinants of success. Current Directions in Psychological Science, 23, 319–325. https://doi.org/10.1177/0963721414541462 http://doi.org/10.1177/0963721414541462
Duckworth, A.L., Peterson, C., Matthews, M.D., & Kelly, D.R. (2007). Grit: perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92, 1087–1101. http://doi.org/10.1037/0022-3514.92.6.1087
Dunbar, R.I.M. (2016). The Social Brain Hypothesis and Human Evolution. Oxford Research Encyclopedia of Psychology, webpage. http://oxfordre.com/psychology/view/10.1093/acrefore/9780190236557.001.0001/acrefore-9780190236557-e-44 http://doi.org/10.1093/acrefore/9780190236557.013.44
Dunbar, R.I.M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22, 469–493. http://www.sciencedirect.com/science/article/pii/004724849290081J http://doi.org/10.1016/0047-2484(92)90081-J
Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501–517.
Dunovan, K., Lynch, B., Molesworth, T., & Verstynen, T. (2015). Competing basal ganglia pathways determine the difference between stopping and deciding not to go. eLife, 4, e08723. https://doi.org/10.7554/eLife.08723 http://doi.org/10.7554/eLife.08723
Dunwiddie, T., & Lynch, G. (1978). Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. The Journal of Physiology, 276, 353–367. https://onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1978.sp012239 http://doi.org/10.1113/jphysiol.1978.sp012239
Dweck, C.S. (2008). Mindset: The New Psychology of Success. Ballantine Books.
Dwivedi, D., & Bhalla, U.S. (2021). Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Frontiers in Molecular Neuroscience, 14, https://www.frontiersin.org/articles/10.3389/fnmol.2021.658435
Eccles, J.C., Ito, M., & Szentágothai, J. (1967). The cerebellum as a neuronal machine. Springer-Verlag. http://doi.org/10.1007/978-3-662-13147-3
Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O., & Clune, J. (2021). First return, then explore. Nature, 590, 580–586. https://www.nature.com/articles/s41586-020-03157-9 http://doi.org/10.1038/s41586-020-03157-9
Economo, M.N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., Graybuck, L.T., Nguyen, T.N., Smith, K.A., Yao, Z., Wang, L., Gerfen, C.R., Chandrashekar, J., Zeng, H., Looger, L.L., & Svoboda, K. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563(7729), 79–84. https://www.nature.com/articles/s41586-018-0642-9 http://doi.org/10.1038/s41586-018-0642-9
Edelman, G. (1987). Neural Darwinism. Basic Books.
Ekman, P., & Davidson, R.J. (Eds.) (1994). The nature of emotion. Oxford.
Ekman, P., & Friesen, W. (1975). Pictures of facial affect. Consulting Psychologists Press.
Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., Askell, A., Bai, Y., Chen, A., & Conerly, T. (2021). A mathematical framework for transformer circuits. Transformer Circuits Thread, 1, 12. https://transformer-circuits.pub/2021/framework/index.html
Ellender, T.J., Harwood, J., Kosillo, P., Capogna, M., & Bolam, J.P. (2013). Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. The Journal of Physiology, 591, 257–272. http://www.ncbi.nlm.nih.gov/pubmed/23109111
Elman, J.L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.
Elman, J.L. (1993). Learning and development in neural networks: the importance of starting small. Cognition, 48, 71–99. http://www.ncbi.nlm.nih.gov/pubmed/8403835
Elman, J.L., Bates, E., Karmiloff-Smith, A., Johnson, M., Parisi, D., & Plunkett, K. (1996). Rethinking Innateness: A Connectionist Perspective on Development. MIT Press.
Elston, G.N. (2003). Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cerebral Cortex, 13, 1124–1138. http://www.ncbi.nlm.nih.gov/pubmed/14576205
Enciso, G.A., Rempe, M., Dmitriev, A.V., Gavrikov, K.E., Terman, D., & Mangel, S.C. (2010). A model of direction selectivity in the starburst amacrine cell network. Journal of Computational Neuroscience, 28, 567–578. https://doi.org/10.1007/s10827-010-0238-3 http://doi.org/10.1007/s10827-010-0238-3
Evans, R.C., Twedell, E.L., Zhu, M., Ascencio, J., Zhang, R., & Khaliq, Z.M. (2020). Functional dissection of basal ganglia inhibitory inputs onto substantia nigra dopaminergic neurons. Cell Reports, 32, 108156. https://www.sciencedirect.com/science/article/pii/S2211124720311451 http://doi.org/10.1016/j.celrep.2020.108156
Faget, L., Zell, V., Souter, E., McPherson, A., Ressler, R., Gutierrez-Reed, N., Yoo, J.H., Dulcis, D., & Hnasko, T.S. (2018). Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nature Communications, 9, 849. https://www.nature.com/articles/s41467-018-03125-y http://doi.org/10.1038/s41467-018-03125-y
Fahlman, S., & Lebiere, C. (1989). The Cascade-Correlation Learning Architecture. In Advances in Neural Information Processing Systems. Morgan-Kaufmann. https://proceedings.neurips.cc/paper_files/paper/1989/hash/69adc1e107f7f7d035d7baf04342e1ca-Abstract.html
Falligant, J.M., Hagopian, L.P., & Newland, M.C. (2024). Bouts, Pauses, and Units of Operant Performance: A Primer. Perspectives on Behavior Science, 47, 643–674. https://doi.org/10.1007/s40614-024-00419-z http://doi.org/10.1007/s40614-024-00419-z
Fallon, I.P., Hughes, R.N., Severino, F.P.U., Kim, N., Lawry, C.M., Watson, G.D.R., Roshchina, M., & Yin, H.H. (2023). The role of the parafascicular thalamic nucleus in action initiation and steering. Current Biology, 33, 2941-2951.e4. https://www.cell.com/current-biology/abstract/S0960-9822(23)00776-5 http://doi.org/10.1016/j.cub.2023.06.025
Fan, L.Z., Kim, D.K., Jennings, J.H., Tian, H., Wang, P.Y., Ramakrishnan, C., Randles, S., Sun, Y., Thadhani, E., Kim, Y.S., Quirin, S., Giocomo, L., Cohen, A.E., & Deisseroth, K. (2023). All-optical physiology resolves a synaptic basis for behavioral timescale plasticity. Cell, 186, 543-559.e19. https://www.cell.com/cell/abstract/S0092-8674(22)01578-1 http://doi.org/10.1016/j.cell.2022.12.035
Fanselow, M.S. (1998). Pavlovian Conditioning, Negative Feedback, and Blocking: Mechanisms that Regulate Association Formation. Neuron, 20, 625–627. https://www.cell.com/neuron/abstract/S0896-6273(00)81002-8 http://doi.org/10.1016/S0896-6273(00)81002-8
Farah, M.J. (1990). Visual Agnosia. MIT Press.
Feng, J., & Steinhardt, J. (2024). How do Language Models Bind Entities in Context? http://arxiv.org/abs/2310.17191 http://doi.org/10.48550/arXiv.2310.17191
Ferraina, S., Pare, M., & Wurtz, R.H. (2002). Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. Journal of Neurophysiology, 87, 845–858. http://www.ncbi.nlm.nih.gov/pubmed/11826051
Ferreira, F., & Henderson, J.M. (1991). Recovery from misanalyses of garden-path sentences. Journal of Memory and Language, 30, 725–745. https://www.sciencedirect.com/science/article/pii/0749596X9190034H http://doi.org/10.1016/0749-596X(91)90034-H
Field, G.D., Gauthier, J.L., Sher, A., Greschner, M., Machado, T.A., Jepson, L.H., Shlens, J., Gunning, D.E., Mathieson, K., Dabrowski, W., Paninski, L., Litke, A.M., & Chichilnisky, E.J. (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature, 467, 673–677. http://www.nature.com/nature/journal/v467/n7316/abs/nature09424.html http://doi.org/10.1038/nature09424
Fodor, J.A., & Pylyshyn, Z.W. (1988). Connectionism and cognitive architecture: a critical analysis. Cognition, 28, 3–71. http://www.ncbi.nlm.nih.gov/pubmed/2450716
Foster, N.N., Barry, J., Korobkova, L., Garcia, L., Gao, L., Becerra, M., Sherafat, Y., Peng, B., Li, X., Choi, J., Gou, L., Zingg, B., Azam, S., Lo, D., Khanjani, N., Zhang, B., Stanis, J., Bowman, I., Cotter, K., Cao, C., Yamashita, S., Tugangui, A., Li, A., Jiang, T., Jia, X., Feng, Z., Aquino, S., Mun, H., Zhu, M., Santarelli, A., Benavidez, N.L., Song, M., Dan, G., Fayzullina, M., Ustrell, S., Boesen, T., Johnson, D.L., Xu, H., Bienkowski, M.S., Yang, X.W., Gong, H., Levine, M.S., Wickersham, I., Luo, Q., Hahn, J.D., Lim, B.K., Zhang, L.I., Cepeda, C., Hintiryan, H., & Dong, H. (2021). The mouse cortico–basal ganglia–thalamic network. Nature, 598(7879), 188–194. https://www.nature.com/articles/s41586-021-03993-3 http://doi.org/10.1038/s41586-021-03993-3
Fourcaud-Trocmé, N., Hansel, D., Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640. https://www.jneurosci.org/content/23/37/11628 http://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
Frank, M.J. (2005). When and when not to use your subthalamic nucleus: Lessons from a computational model of the basal ganglia. In A.K. Seth, T.J. Prescott, & J.J. Bryson (Eds.), Modelling Natural Action Selection: Proceedings of an International Workshop (pp. 53–60). AISB.
Frank, M.J. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136. http://www.ncbi.nlm.nih.gov/pubmed/16945502
Frank, M.J., & Claus, E.D. (2006). Anatomy of a decision: Striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological Review, 113, 300–326. http://www.ncbi.nlm.nih.gov/pubmed/16637763
Frank, M.J., Loughry, B., & O'Reilly, R.C. (2001). Interactions between the frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, and Behavioral Neuroscience, 1, 137–160. https://www.ncbi.nlm.nih.gov/pubmed/12467110
Freeze, B.S., Kravitz, A.V., Hammack, N., Berke, J.D., & Kreitzer, A.C. (2013). Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons. Journal of Neuroscience, 33, 18531–18539. https://www.jneurosci.org/content/33/47/18531 http://doi.org/10.1523/JNEUROSCI.1278-13.2013
Friedman, A., Homma, D., Gibb, L.G., Amemori, K., Rubin, S.J., Hood, A.S., Riad, M.H., & Graybiel, A.M. (2015). A corticostriatal path targeting striosomes controls decision-making under conflict. Cell, 161, 1320–1333. http://www.sciencedirect.com/science/article/pii/S009286741500505X http://doi.org/10.1016/j.cell.2015.04.049
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B, 360, 815–836. http://www.ncbi.nlm.nih.gov/pubmed/15937014
Froemke, R.C., & Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416, 433–437. http://www.ncbi.nlm.nih.gov/pubmed/11919633
Froemke, R.C., Tsay, I.A., Raad, M., Long, J.D., & Dan, Y. (2006). Contribution of individual spikes in burst-induced long-term synaptic modification. Journal of Neurophysiology, 95, 1620–1629.
Fujimoto, A., Hori, Y., Nagai, Y., Kikuchi, E., Oyama, K., Suhara, T., & Minamimoto, T. (2019). Signaling Incentive and Drive in the Primate Ventral Pallidum for Motivational Control of Goal-Directed Action. Journal of Neuroscience, 39, 1793–1804. https://www.jneurosci.org/content/39/10/1793 http://doi.org/10.1523/JNEUROSCI.2399-18.2018
Fujimoto, K., & Kita, H. (1993). Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Research, 609, 185–192. http://www.ncbi.nlm.nih.gov/pubmed/8508302
Fujita, H. (2021). On the parsing of garden-path sentences. Language, Cognition and Neuroscience, 36, 1234–1245. https://doi.org/10.1080/23273798.2021.1922727 http://doi.org/10.1080/23273798.2021.1922727
Fujita, M. (1982). Adaptive filter model of the cerebellum. Biological Cybernetics, 45, 195–206. https://doi.org/10.1007/BF00336192 http://doi.org/10.1007/BF00336192
Fujita, T., Fukai, T., & Kitano, K. (2012). Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron. Journal of Computational Neuroscience, 32, 539–553. http://doi.org/10.1007/s10827-011-0368-2
Fujita, H., Kodama, T., & Lac, S. (2020). Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife, 9, e58613. https://doi.org/10.7554/eLife.58613 http://doi.org/10.7554/eLife.58613
Funahashi, S., Bruce, C.J., & Goldman-Rakic, P.S. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349. http://www.ncbi.nlm.nih.gov/pubmed/2918358
Fusi, S., Miller, E.K., & Rigotti, M. (2016). Why neurons mix: high dimensionality for higher cognition. Current Opinion in Neurobiology, 37, 66–74. http://www.sciencedirect.com/science/article/pii/S0959438816000118 http://doi.org/10.1016/j.conb.2016.01.010
Fuster, J.M., & Alexander, G.E. (1971). Neuron activity related to short-term memory. Science, 173, 652–654.
Galarreta, M., & Hestrin, S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature, 402, 72–75. https://www.nature.com/articles/47029 http://doi.org/10.1038/47029
Galland, C.C. (1993). The Limitations of Deterministic Boltzmann Machine Learning. Network: Computation in Neural Systems, 4, 355–379.
Galland, C.C., & Hinton, G.E. (1990). Discovering High Order Features with Mean Field Modules. In D.S. Touretzky (Ed.), Advances in Neural Information Processing Systems, 2. Morgan Kaufmann.
Galland, C.C., & Hinton, G.E. (1991). Deterministic Boltzmann Learning in Networks with Asymmetric Connectivity. In D.S. Touretzky, J.L. Elman, T.J. Sejnowski, & G.E. Hinton (Eds.), Connectionist Models: Proceedings of the 1990 Summer School (pp. 3–9). Morgan Kaufmann.
Gao, Z., Beugen, B.J., & De Zeeuw, C.I. (2012). Distributed synergistic plasticity and cerebellar learning. Nature Reviews Neuroscience, 13, 619–635. https://www.nature.com/articles/nrn3312 http://doi.org/10.1038/nrn3312
Garcia, K.S., Steele, P.M., & Mauk, M.D. (1999). Cerebellar Cortex Lesions Prevent Acquisition of Conditioned Eyelid Responses. Journal of Neuroscience, 19, 10940–10947. https://www.jneurosci.org/content/19/24/10940 http://doi.org/10.1523/JNEUROSCI.19-24-10940.1999
Gegenfurtner, K.R. (2003). Cortical mechanisms of colour vision. Nature Reviews Neuroscience, 4, 563–572. http://www.nature.com/nrn/journal/v4/n7/abs/nrn1138.html http://doi.org/10.1038/nrn1138
Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 721–741.
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170. https://www.sciencedirect.com/science/article/pii/S0364021383800093 http://doi.org/10.1016/S0364-0213(83)80009-3
Gerfen, C.R. (1989). The neostriatal mosaic: Striatal patch-matrix organization is related to cortical lamination. Science, 246, 385–358. http://www.ncbi.nlm.nih.gov/pubmed/2799392
Gerfen, C.R. (1992). The neostriatal mosaic: Multiple levels of compartmental organization in the basal ganglia. Annual Review of Neuroscience, 15, 285–320. http://www.ncbi.nlm.nih.gov/pubmed/1575444
Gershman, S.J., & Beck, J.M. (2017). Complex Probabilistic Inference. In Computational Models of Brain and Behavior (pp. 453–466). John Wiley & Sons, Ltd. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119159193.ch33 http://doi.org/10.1002/9781119159193.ch33
Gers, F.A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. In Neural Computation (pp. 2451–2471). http://www.ncbi.nlm.nih.gov/pubmed/11032042
Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., & Brea, J. (2018). Eligibility traces and plasticity on behavioral time scales: Experimental support of NeoHebbian three-factor learning rules. Frontiers in Neural Circuits, 12, https://www.frontiersin.org/articles/10.3389/fncir.2018.00053/full http://doi.org/10.3389/fncir.2018.00053
Gibson, J.R., Beierlein, M., & Connors, B.W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402, 75–79. https://www.nature.com/articles/47035 http://doi.org/10.1038/47035
Gibson, F.P., Fichman, M., & Plaut, D.C. (1997). Learning in Dynamic Decision Tasks: Computational Model and Empirical Evidence. Organizational Behavior and Human Decision Processes, 71, 1–35. https://www.sciencedirect.com/science/article/pii/S0749597897927126 http://doi.org/10.1006/obhd.1997.2712
Giessen, R.S.V.D., Koekkoek, S.K., Dorp, S., Gruijl, J.R.D., Cupido, A., Khosrovani, S., Dortland, B., Wellershaus, K., Degen, J., Deuchars, J., Fuchs, E.C., Monyer, H., Willecke, K., Jeu, M.T.G.D., & Zeeuw, C.I.D. (2008). Role of Olivary Electrical Coupling in Cerebellar Motor Learning. Neuron, 58, 599–612. https://www.cell.com/neuron/abstract/S0896-6273(08)00262-6 http://doi.org/10.1016/j.neuron.2008.03.016
Giguere, M., & Goldman‐Rakic, P.S. (1988). Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. Journal of Comparative Neurology, 277, 195–213. http://onlinelibrary.wiley.com/doi/abs/10.1002/cne.902770204 http://doi.org/10.1002/cne.902770204
Gillies, A., & Willshaw, D. (2006). Membrane Channel Interactions Underlying Rat Subthalamic Projection Neuron Rhythmic and Bursting Activity. Journal of Neurophysiology, 95, 2352–2365. http://journals.physiology.org/doi/full/10.1152/jn.00525.2005 http://doi.org/10.1152/jn.00525.2005
Gilmartin, M.R., Balderston, N.L., & Helmstetter, F.J. (2014). Prefrontal cortical regulation of fear learning. Trends in Neurosciences, 37, 455–464. https://www.sciencedirect.com/science/article/pii/S0166223614000794 http://doi.org/10.1016/j.tins.2014.05.004
Glajch, K.E., Kelver, D.A., Hegeman, D.J., Cui, Q., Xenias, H.S., Augustine, E.C., Hernández, V.M., Verma, N., Huang, T.Y., Luo, M., Justice, N.J., & Chan, C.S. (2016). Npas1+ pallidal neurons target striatal projection neurons. Journal of Neuroscience, 36, 5472–5488. https://www.jneurosci.org/content/36/20/5472 http://doi.org/10.1523/JNEUROSCI.1720-15.2016
Goldberg, J.A., & Reynolds, J.N.J. (2011). Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience, 198, 27–43. http://www.sciencedirect.com/science/article/pii/S0306452211010256 http://doi.org/10.1016/j.neuroscience.2011.08.067
Goldman-Rakic, P.S. (1995). Cellular basis of working memory. Neuron, 14, 477–485. http://www.ncbi.nlm.nih.gov/pubmed/7695894
Gold, J.I., & Shadlen, M.N. (2002). Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36, 299–308. http://www.ncbi.nlm.nih.gov/pubmed/12383783
Gollwitzer, P.M. (2012). Mindset theory of action phases. In Handbook of theories of social psychology, Vol. 1 (pp. 526–545). Sage Publications Ltd. http://doi.org/10.4135/9781446249215.n26
Gollwitzer, P.M., & Sheeran, P. (2006). Implementation intentions and goal achievement: A meta-analysis of effects and processes. Advances in experimental social psychology, 38, 69–119.
Gonzales, K.K., & Smith, Y. (2015). Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Annals of the New York Academy of Sciences, 1349, 1–45. http://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/nyas.12762 http://doi.org/10.1111/nyas.12762
Goodale, M.A., & Milner, A.D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25.
Goodell, D.J., Tullis, J.E., & Bayer, K.U. (2021). Young DAPK1 knockout mice have altered presynaptic function. Journal of Neurophysiology, 125, 1973–1981. http://journals.physiology.org/doi/full/10.1152/jn.00055.2021 http://doi.org/10.1152/jn.00055.2021
Goodell, D.J., Zaegel, V., Coultrap, S.J., Hell, J.W., & Bayer, K.U. (2017). DAPK1 mediates LTD by making CaMKII/GluN2B binding LTP specific. Cell Reports, 19, 2231–2243. http://www.sciencedirect.com/science/article/pii/S2211124717307258 http://doi.org/10.1016/j.celrep.2017.05.068
Gould, S.J. (1977). Ontogeny and phylogeny. Harvard U Press.
Gould, S.J., & Lewontin, R.C. (1979). The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. Proceedings of the Royal Society (London) B, 205, 581–598.
Graybiel, A.M., & Ragsdale, C.W.J. (1978). Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining. Proceedings of the National Academy of Sciences, USA, 75, 5723–5726.
Greene, D.L., & Hoshi, N. (2017). Modulation of Kv7 channels and excitability in the brain. Cellular and molecular life sciences : CMLS, 74, 495–508. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243414/ http://doi.org/10.1007/s00018-016-2359-y
Greene, M.J., Kim, J.S., & Seung, H.S. (2016). Analogous Convergence of Sustained and Transient Inputs in Parallel On and Off Pathways for Retinal Motion Computation. Cell Reports, 14, 1892–1900. https://www.cell.com/cell-reports/abstract/S2211-1247(16)30068-7 http://doi.org/10.1016/j.celrep.2016.02.001
Green, J.T., & Steinmetz, J.E. (2005). Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning. Learning & Memory, 12, 260–269. http://learnmem.cshlp.org/content/12/3/260 http://doi.org/10.1101/lm.89505
Grieves, R.M., & Jeffery, K.J. (2017). The representation of space in the brain. Behavioural Processes, 135, 113–131. http://doi.org/10.1016/j.beproc.2016.12.012
Grillner, S., & Robertson, B. (2016). The Basal Ganglia Over 500 Million Years. Current Biology, 26, R1088-R1100. http://www.sciencedirect.com/science/article/pii/S0960982216306807 http://doi.org/10.1016/j.cub.2016.06.041
Grillner, S., Robertson, B., & Kotaleski, J.H. (2020). Basal Ganglia—A Motion Perspective. In Comprehensive Physiology (pp. 1241–1275). John Wiley & Sons, Ltd. https://onlinelibrary.wiley.com/doi/abs/10.1002/cphy.c190045 http://doi.org/10.1002/cphy.c190045
Groenewegen, H.J., Berendse, H.W., Wolters, J.G., & Lohman, A.H. (1990). The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: Evidence for a parallel organization. In H. Uylings, C. Van Eden, J. De Bruin, .. Corner, & M. Feenstra (Eds.), Progress in Brain Research (1st ed., pp. 95-116; discussion 116-118). http://www.ncbi.nlm.nih.gov/pubmed/2094917
Gruart, A., Blázquez, P., Pastor, A.M., & Delgado-García, J.M. (1994). Very short-term potentiation of climbing fiber effects on deep cerebellar nuclei neurons by conditioning stimulation of mossy fiber afferents. Experimental Brain Research, 101, 173–177. https://doi.org/10.1007/BF00243229 http://doi.org/10.1007/BF00243229
Guilhemsang, L., & Mallet, N.P. (2024). Arkypallidal neurons in basal ganglia circuits: Unveiling novel pallidostriatal loops? Current Opinion in Neurobiology, 84, 102814. https://www.sciencedirect.com/science/article/pii/S0959438823001393 http://doi.org/10.1016/j.conb.2023.102814
Gulley, J.M., Kuwajima, M., Mayhill, E., & Rebec, G.V. (1999). Behavior-related changes in the activity of substantia nigra pars reticulata neurons in freely moving rats. Brain Research, 845, 68–76. https://www.sciencedirect.com/science/article/pii/S0006899399019320 http://doi.org/10.1016/S0006-8993(99)01932-0
Günay, C., Edgerton, J.R., & Jaeger, D. (2008). Channel Density Distributions Explain Spiking Variability in the Globus Pallidus: A Combined Physiology and Computer Simulation Database Approach. Journal of Neuroscience, 28, 7476–7491. https://www.jneurosci.org/content/28/30/7476 http://doi.org/10.1523/JNEUROSCI.4198-07.2008
Guo, Z.V., Li, N., Huber, D., Ophir, E., Gutnisky, D., Ting, J.T., Feng, G., & Svoboda, K. (2014). Flow of cortical activity underlying a tactile decision in mice. Neuron, 81, 179–194. http://www.sciencedirect.com/science/article/pii/S0896627313009240 http://doi.org/10.1016/j.neuron.2013.10.020
Guo, D., & Uusisaari, M.Y. (2025). In vivo imaging of inferior olive neurons reveals roles of co-activation and cerebellar feedback in olivocerebellar signaling. 2025.01.06.631443. https://www.biorxiv.org/content/10.1101/2025.01.06.631443v1 http://doi.org/10.1101/2025.01.06.631443
Guo, K., Yamawaki, N., Svoboda, K., & Shepherd, G.M.G. (2018). Anterolateral motor cortex connects with a medial subdivision of ventromedial thalamus through cell type-specific circuits, forming an excitatory thalamo-cortico-thalamic loop via layer 1 apical tuft dendrites of layer 5b pyramidal tract type neurons. Journal of Neuroscience, 38, 8787–8797. https://www.jneurosci.org/content/38/41/8787 http://doi.org/10.1523/JNEUROSCI.1333-18.2018
Gur-Arieh, Y., Geva, M., & Geiger, A. (2025). Mixing Mechanisms: How Language Models Retrieve Bound Entities In-Context. http://arxiv.org/abs/2510.06182 http://doi.org/10.48550/arXiv.2510.06182
Gurney, K.N., Humphries, M.D., & Redgrave, P. (2015). A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biology, 13, ePub only e1002034. http://www.ncbi.nlm.nih.gov/pubmed/25562526
Gurney, K., Prescott, T.J., & Redgrave, P. (2001). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological Cybernetics, 84, 401–410. http://www.ncbi.nlm.nih.gov/pubmed/11417052
Gurney, K., Prescott, T.J., & Redgrave, P. (2001). A computational model of action selection in the basal ganglia II. Analysis and simulation of behaviour. Biological Cybernetics, 84, 411–424. http://www.ncbi.nlm.nih.gov/pubmed/11417053
Gu, B., Schmidt, R., & Berke, J.D. (2020). Globus pallidus dynamics reveal covert strategies for behavioral inhibition. eLife, 9, e57215. https://elifesciences.org/articles/57215 http://doi.org/10.7554/eLife.57215
Gutfreund, Y., Yarom, Y., & Segev, I. (1995). Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. The Journal of Physiology, 483, 621–640. https://onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1995.sp020611 http://doi.org/10.1113/jphysiol.1995.sp020611
Haber, S.N. (2003). The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy, 26, 317–330. http://www.ncbi.nlm.nih.gov/pubmed/14729134
Haber, S.N., Fudge, J.L., & McFarland, N.R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Journal of Neuroscience, 20, 2369–2382. http://www.ncbi.nlm.nih.gov/pubmed/10704511
Hafner, D., Lillicrap, T., Norouzi, M., & Ba, J. (2022). Mastering Atari with Discrete World Models. http://arxiv.org/abs/2010.02193 http://doi.org/10.48550/arXiv.2010.02193
Hallworth, N.E., Wilson, C.J., & Bevan, M.D. (2003). Apamin-Sensitive Small Conductance Calcium-Activated Potassium Channels, through their Selective Coupling to Voltage-Gated Calcium Channels, Are Critical Determinants of the Precision, Pace, and Pattern of Action Potential Generation in Rat Subthalamic Nucleus Neurons In Vitro. Journal of Neuroscience, 23, 7525–7542. http://www.jneurosci.org/content/23/20/7525 http://doi.org/10.1523/JNEUROSCI.23-20-07525.2003
Halverson, H.E., Khilkevich, A., & Mauk, M.D. (2015). Relating Cerebellar Purkinje Cell Activity to the Timing and Amplitude of Conditioned Eyelid Responses. Journal of Neuroscience, 35, 7813–7832. https://www.jneurosci.org/content/35/20/7813 http://doi.org/10.1523/JNEUROSCI.3663-14.2015
Hangya, B., Ranade, S.P., Lorenc, M., & Kepecs, A. (2015). Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell, 162, 1155–1168. https://www.sciencedirect.com/science/article/pii/S0092867415009733 http://doi.org/10.1016/j.cell.2015.07.057
Hansel, C., Linden, D.J., & D'Angelo, E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature neuroscience, 4, 467–475. http://www.ncbi.nlm.nih.gov/pubmed/11319554
Hao, S., Zhu, X., Huang, Z., Yang, Q., Liu, H., Wu, Y., Zhan, Y., Dong, Y., Li, C., Wang, H., Haasdijk, E., Wu, Z., Li, S., Yan, H., Zhu, L., Guo, S., Wang, Z., Ye, A., Lin, Y., Cui, L., Tan, X., Liu, H., Wang, M., Chen, J., Zhong, Y., Du, W., Wang, G., Lai, T., Cao, M., Yang, T., Xu, Y., Li, L., Yu, Q., Zhuang, Z., Xia, Y., Lei, Y., An, Y., Cheng, M., Zhao, Y., Han, L., Yuan, Y., Song, X., Song, Y., Gu, L., Liu, C., Lin, X., Wang, R., Wang, Z., Wang, Y., Li, S., Li, H., Song, J., Chen, M., Zhou, W., Yuan, N., Sun, S., Wang, S., Chen, Y., Zheng, M., Fang, J., Zhang, R., Zhang, S., Chai, Q., Liu, J., Wei, W., He, J., Zhou, H., Sun, Y., Liu, Z., Liu, C., Yao, J., Liang, Z., Xu, X., Poo, M., Li, C., De Zeeuw, C.I., Shen, Z., Liu, Z., Liu, L., Liu, S., Sun, Y., & Liu, C. (2024). Cross-species single-cell spatial transcriptomic atlases of the cerebellar cortex. Science, 385, eado3927. https://www.science.org/doi/full/10.1126/science.ado3927 http://doi.org/10.1126/science.ado3927
Harris, K.D., & Shepherd, G.M.G. (2015). The neocortical circuit: themes and variations. Nature Neuroscience, 18(2), 170–181. http://www.nature.com/articles/nn.3917 http://doi.org/10.1038/nn.3917
Hausser, M., & Mel, B. (2003). Dendrites: bug or feature? Current Opinion in Neurobiology, 13, 372–383.
Hawkes, R., & Leclerc, N. (1987). Antigenic map of the rat cerebellar cortex: The distribution of parasagittal bands as revealed by monoclonal anti-purkinje cell antibody mabQ113. Journal of Comparative Neurology, 256, 29–41. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.902560104 http://doi.org/10.1002/cne.902560104
Hawkins, J., & Blakeslee, S. (2004). On Intelligence. Times Books.
Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science (New York, N.Y.), 293, 2425–2429. http://www.ncbi.nlm.nih.gov/pubmed/11577229
Hazy, T.E., Frank, M.J., & O'Reilly, R.C. (2006). Banishing the homunculus: Making working memory work. Neuroscience, 139, 105–118. http://www.ncbi.nlm.nih.gov/pubmed/16343792
Hazy, T.E., Frank, M.J., & O'Reilly, R.C. (2010). Neural mechanisms of acquired phasic dopamine responses in learning. Neuroscience and Biobehavioral Reviews, 34, 701–720. http://www.ncbi.nlm.nih.gov/pubmed/19944716
Hebb, D.O. (1949). The Organization of Behavior. Wiley.
Heckhausen, H., & Gollwitzer, P.M. (1987). Thought contents and cognitive functioning in motivational versus volitional states of mind. Motivation and Emotion, 11, 101–120. https://doi.org/10.1007/BF00992338 http://doi.org/10.1007/BF00992338
Heckroth, J.A. (1994). Quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. I. Morphology and cell number. Journal of Comparative Neurology, 343, 173–182. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.903430113 http://doi.org/10.1002/cne.903430113
He, K., Huertas, M., Hong, S.Z., Tie, X., Hell, J.W., Shouval, H., & Kirkwood, A. (2015). Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron, 88, 528–538. https://www.sciencedirect.com/science/article/pii/S0896627315008260 http://doi.org/10.1016/j.neuron.2015.09.037
Heilbronner, S.R., Rodriguez-Romaguera, J., Quirk, G.J., Groenewegen, H.J., & Haber, S.N. (2016). Circuit-based corticostriatal homologies between rat and primate. Biological Psychiatry, 80, 509–521. http://www.sciencedirect.com/science/article/pii/S0006322316323885 http://doi.org/10.1016/j.biopsych.2016.05.012
Helmholtz, H. (1867). Treatise on Physiological Optics, Vol III. Courier Corporation.
Herd, S.A., Krueger, K., Nair, A., Mollick, J., & O’Reilly, R.C. (2021). Neural Mechanisms of Human Decision-Making. Cognitive, Affective, & Behavioral Neuroscience, 21, 35–57. https://doi.org/10.3758/s13415-020-00842-0 http://doi.org/10.3758/s13415-020-00842-0
Herd, S.A., & O'Reilly, R.C. (2005). Serial visual search from a parallel model. Vision Research, 45, 2987–2992. http://www.ncbi.nlm.nih.gov/pubmed/16139862
Hertz, J., Krogh, A., & Palmer, R.G. (1991). Introduction to the Theory of Neural Computation. Addison-Wesley.
Herzfeld, D.J., Hall, N.J., Tringides, M., & Lisberger, S.G. (2020). Principles of operation of a cerebellar learning circuit. eLife, 9, e55217. https://doi.org/10.7554/eLife.55217 http://doi.org/10.7554/eLife.55217
Hestrin, S., Nicoll, R.A., Perkel, D.J., & Sah, P. (1990). Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. The Journal of Physiology, 422, 203–225. http://www.ncbi.nlm.nih.gov/pubmed/1972190
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arXiv:1512.03385 [cs], http://arxiv.org/abs/1512.03385
Hinton, G.E., & Sejnowski, T.J. (1983). Optimal perceptual inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Hinton, G.E., & Sejnowski, T.J. (1986). Learning and Relearning in Boltzmann Machines. In D.E. Rumelhart, J.L. McClelland, & P.R. Group (Eds.), Parallel Distributed Processing. Volume 1: Foundations (pp. 282–317). MIT Press.
Hitier, M., Besnard, S., & Smith, P.F. (2014). Vestibular pathways involved in cognition. Frontiers in Integrative Neuroscience, 8, https://www.frontiersin.org/journals/integrative-neuroscience/articles/10.3389/fnint.2014.00059/full http://doi.org/10.3389/fnint.2014.00059
Hoang, H., Tsutsumi, S., Matsuzaki, M., Kano, M., Kawato, M., Kitamura, K., & Toyama, K. (2023). Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning. eLife, 12, e86340. https://doi.org/10.7554/eLife.86340 http://doi.org/10.7554/eLife.86340
Hobson, J.A., & Pace-Schott, E.F. (2002). The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nature Reviews Neuroscience, 3(9), 679–693. http://www.nature.com/articles/nrn915 http://doi.org/10.1038/nrn915
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9, 1735–1780.
Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544. https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1952.sp004764 http://doi.org/10.1113/jphysiol.1952.sp004764
Hoebeek, F.E., Witter, L., Ruigrok, T.J.H., & De Zeeuw, C.I. (2010). Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proceedings of the National Academy of Sciences of the United States of America, 107, http://www.ncbi.nlm.nih.gov/pubmed/20395550
Hoffman, D.A., Magee, J.C., Colbert, C.M., & Johnston, D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875. https://www.nature.com/articles/43119 http://doi.org/10.1038/43119
Holyoak, K.J. (2012). Analogy and Relational Reasoning. In K.J. Holyoak, & R.G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 0). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199734689.013.0013 http://doi.org/10.1093/oxfordhb/9780199734689.013.0013
Hoos, H.H., & Tsang, E. (2006). Chapter 5 - Local Search Methods. In F. Rossi, P. Beek, & T. Walsh (Eds.), Foundations of Artificial Intelligence (pp. 135–167). Elsevier. https://www.sciencedirect.com/science/article/pii/S157465260680009X http://doi.org/10.1016/S1574-6526(06)80009-X
Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79, 2554–2558. http://www.ncbi.nlm.nih.gov/pubmed/6953413
Hopfield, J.J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences USA, 81, 3088–3092. http://www.ncbi.nlm.nih.gov/pubmed/6587342
Hopfield, J.J. (1995). Pattern recognition computation using action potential timing for stimulus representation. Nature, 376, 33. http://www.ncbi.nlm.nih.gov/pubmed/7596429
Hopfield, J.J., & Tank, D.W. (1985). {`Neural'} computation of decisions in optimization problems. Biological Cybernetics, 52, 141–152. http://www.ncbi.nlm.nih.gov/pubmed/4027280
Horak, F.B., & Anderson, M.E. (1984). Influence of globus pallidus on arm movements in monkeys. I. Effects of kainic acid-induced lesions. Journal of Neurophysiology, 52, 290–304. https://journals.physiology.org/doi/abs/10.1152/jn.1984.52.2.290 http://doi.org/10.1152/jn.1984.52.2.290
Houck, B.D., & Person, A.L. (2014). Cerebellar loops: A review of the nucleocortical pathway. Cerebellum (London, England), 13, 378–385. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207368/ http://doi.org/10.1007/s12311-013-0543-2
Houck, B.D., & Person, A.L. (2015). Cerebellar premotor output neurons collateralize to innervate the cerebellar cortex. Journal of Comparative Neurology, 523, 2254–2271. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.23787 http://doi.org/10.1002/cne.23787
Houk, J.C., Adams, J.L., & Barto, A.G. (1995). A model of how the basal ganglia generate and use neural signals that predict reinforcement. In J.C. Houk, J.L. Davis, & D.G. Beiser (Eds.), Models of Information Processing in the Basal Ganglia (pp. 233–248). MIT Press.
Howard, C.D., Li, H., Geddes, C.E., & Jin, X. (2017). Dynamic nigrostriatal dopamine biases action selection. Neuron, 93, 1436-1450.e8. https://www.sciencedirect.com/science/article/pii/S089662731730137X http://doi.org/10.1016/j.neuron.2017.02.029
Hoy, J.L., & Farrow, K. (2025). The superior colliculus. Current Biology, 35, R164-R168. https://www.cell.com/current-biology/abstract/S0960-9822(25)00052-1 http://doi.org/10.1016/j.cub.2025.01.022
Huang, J., Yang, D., & Potts, C. (2024). Demystifying Verbatim Memorization in Large Language Models. http://arxiv.org/abs/2407.17817 http://doi.org/10.48550/arXiv.2407.17817
Hubel, D., & Wiesel, T.N. (1962). Receptive Fields, Binocular Interaction, and Functional Architecture in the Cat's Visual Cortex. Journal of Physiology, 160, 106–154.
Huerta-Ocampo, I., Dautan, D., Gut, N.K., Khan, B., & Mena-Segovia, J. (2021). Whole-brain mapping of monosynaptic inputs to midbrain cholinergic neurons. Scientific Reports, 11, 9055. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079369/ http://doi.org/10.1038/s41598-021-88374-6
Hull, C. (2020). Prediction signals in the cerebellum: Beyond supervised motor learning. eLife, 9, e54073. https://doi.org/10.7554/eLife.54073 http://doi.org/10.7554/eLife.54073
Hull, C.L. (1943). Principles of Behavior. Appleton.
Humphries, M.D., & Gurney, K. (2021). Making decisions in the dark basement of the brain: A look back at the GPR model of action selection and the basal ganglia. Biological Cybernetics, 115, 323–329. https://doi.org/10.1007/s00422-021-00887-5 http://doi.org/10.1007/s00422-021-00887-5
Hunt, L.T., Malalasekera, W.M.N., Berker, A.O., Miranda, B., Farmer, S.F., Behrens, T.E.J., & Kennerley, S.W. (2017). Triple dissociation of attention and decision computations across prefrontal cortex. bioRxiv, 171173. https://www.biorxiv.org/content/early/2017/08/01/171173 http://doi.org/10.1101/171173
Hunt, L.T., Malalasekera, W.M.N., Berker, A.O., Miranda, B., Farmer, S.F., Behrens, T.E.J., & Kennerley, S.W. (2018). Triple dissociation of attention and decision computations across prefrontal cortex. Nature Neuroscience, 21, 1471–1481. https://www.nature.com/articles/s41593-018-0239-5 http://doi.org/10.1038/s41593-018-0239-5
Hyvärinen, A. (2013). Independent component analysis: recent advances. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 371, 20110534. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538438/ http://doi.org/10.1098/rsta.2011.0534
Iacobucci, G.J., & Popescu, G.K. (2024). Calcium- and calmodulin-dependent inhibition of NMDA receptor currents. Biophysical Journal, 123, 277–293. https://www.cell.com/biophysj/abstract/S0006-3495(23)04156-5 http://doi.org/10.1016/j.bpj.2023.12.018
Inagaki, H.K., Chen, S., Ridder, M.C., Sah, P., Li, N., Yang, Z., Hasanbegovic, H., Gao, Z., Gerfen, C.R., & Svoboda, K. (2022). A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell, 185, 1065-1081.e23. https://www.sciencedirect.com/science/article/pii/S0092867422001465 http://doi.org/10.1016/j.cell.2022.02.006
Inase, M., Buford, J.A., & Anderson, M.E. (1996). Changes in the control of arm position, movement, and thalamic discharge during local inactivation in the globus pallidus of the monkey. Journal of Neurophysiology, 75, 1087–1104. https://www.physiology.org/doi/abs/10.1152/jn.1996.75.3.1087 http://doi.org/10.1152/jn.1996.75.3.1087
Inglebert, Y., Aljadeff, J., Brunel, N., & Debanne, D. (2020). Synaptic plasticity rules with physiological calcium levels. Proceedings of the National Academy of Sciences, 117, 33639–33648. https://www.pnas.org/doi/abs/10.1073/pnas.2013663117 http://doi.org/10.1073/pnas.2013663117
Isaacson, J.S., & Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron, 72, 231–243. https://www.sciencedirect.com/science/article/pii/S0896627311008798 http://doi.org/10.1016/j.neuron.2011.09.027
Ishikawa, T., Tomatsu, S., Izawa, J., & Kakei, S. (2016). The cerebro-cerebellum: Could it be loci of forward models? Neuroscience Research, 104, 72–79. http://www.sciencedirect.com/science/article/pii/S016801021500293X http://doi.org/10.1016/j.neures.2015.12.003
Ito, M. (2001). Cerebellar Long-Term Depression: Characterization, Signal Transduction, and Functional Roles. Physiological Reviews, 81, 1143–1195. https://journals.physiology.org/doi/full/10.1152/physrev.2001.81.3.1143 http://doi.org/10.1152/physrev.2001.81.3.1143
Ito, M. (2013). Error detection and representation in the olivo-cerebellar system. Frontiers in Neural Circuits, 7, https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2013.00001/full http://doi.org/10.3389/fncir.2013.00001
Ito, M. (1972). Neural design of the cerebellar motor control system. Brain Research, 40, 81–84. https://www.sciencedirect.com/science/article/pii/0006899372901102 http://doi.org/10.1016/0006-8993(72)90110-2
Ito, M. (1984). The Cerebellum and Neural Control. Raven Press.
Ito, M. (1998). The cerebellum: from structure to control. Trends in cognitive sciences, 2, http://www.ncbi.nlm.nih.gov/pubmed/21227234
Ito, M., & Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253–258. https://www.sciencedirect.com/science/article/pii/0304394082903809 http://doi.org/10.1016/0304-3940(82)90380-9
Jahr, C.E., & Stevens, C.F. (1990). A quantitative description of NMDA receptor-channel kinetic behavior. Journal of Neuroscience, 10, 1830–1837. http://www.jneurosci.org/content/10/6/1830 http://doi.org/10.1523/JNEUROSCI.10-06-01830.1990
Jain, V., Murphy-Baum, B.L., deRosenroll, G., Sethuramanujam, S., Delsey, M., Delaney, K.R., & Awatramani, G.B. (2020). The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. eLife, 9, e52949. https://doi.org/10.7554/eLife.52949 http://doi.org/10.7554/eLife.52949
Jain, A., Nakahata, Y., Pancani, T., Watabe, T., Rusina, P., South, K., Adachi, K., Yan, L., Simorowski, N., Furukawa, H., & Yasuda, R. (2024). Dendritic, delayed, stochastic CaMKII activation in behavioural time scale plasticity. Nature, 635, 151–159. https://www.nature.com/articles/s41586-024-08021-8 http://doi.org/10.1038/s41586-024-08021-8
Jarsky, T., Roxin, A., Kath, W.L., & Spruston, N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci, 8, 1667–1676. http://dx.doi.org/10.1038/nn1599
Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16, 200–206. http://www.ncbi.nlm.nih.gov/pubmed/22436764
Jeon, H., Lee, H., Kwon, D., Kim, J., Tanaka-Yamamoto, K., Yook, J.S., Feng, L., Park, H.R., Lim, Y.H., Cho, Z., Paek, S.H., & Kim, J. (2022). Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus. Cell Reports, 38, 110439. https://www.sciencedirect.com/science/article/pii/S2211124722001668 http://doi.org/10.1016/j.celrep.2022.110439
Jilk, D., Lebiere, C., O'Reilly, R.C., & Anderson, J. (2008). SAL: an explicitly pluralistic cognitive architecture. Journal of Experimental & Theoretical Artificial Intelligence, 20, 197–218. http://www.ingentaconnect.com/content/tandf/teta/2008/00000020/00000003/art00004
Jirenhed, D., Bengtsson, F., & Hesslow, G. (2007). Acquisition, Extinction, and Reacquisition of a Cerebellar Cortical Memory Trace. Journal of Neuroscience, 27, 2493–2502. https://www.jneurosci.org/content/27/10/2493 http://doi.org/10.1523/JNEUROSCI.4202-06.2007
Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96, 451–474. http://www.ncbi.nlm.nih.gov/pubmed/10717427
Jones, E.G. (1998). A new view of specific and nonspecific thalamocortical connections. Advances in Neurology, 77, 49–71. http://www.ncbi.nlm.nih.gov/pubmed/9709817
Jordan, M.I., & Rumelhart, D.E. (1992). Forward models: supervised learning with a distal teacher. Cognitive Science, 16, 307–354. http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1603_1/abstract http://doi.org/10.1207/s15516709cog1603_1
Judd, E.N., Lewis, S.M., & Person, A.L. (2021). Diverse inhibitory projections from the cerebellar interposed nucleus. eLife, 10, e66231. https://doi.org/10.7554/eLife.66231 http://doi.org/10.7554/eLife.66231
Jutten, C., & Herault, J. (1991). Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24, 1–10. https://www.sciencedirect.com/science/article/pii/016516849190079X http://doi.org/10.1016/0165-1684(91)90079-X
Kaczmarek, L.K. (2013). Slack, Slick, and Sodium-Activated Potassium Channels. ISRN Neuroscience, 2013, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850776/ http://doi.org/10.1155/2013/354262
Kahneman, D. (2011). Thinking, Fast and Slow. Macmillan.
Kahneman, D., & Tversky, A. (1984). Choices, values and frames. American Psychologist, 39, 341–50.
Karbach, J., & Kray, J. (2021). Executive Function Training. In T. Strobach, & J. Karbach (Eds.), Cognitive Training: An Overview of Features and Applications (pp. 199–212). Springer International Publishing. https://doi.org/10.1007/978-3-030-39292-5_14 http://doi.org/10.1007/978-3-030-39292-5_14
Kass, J. (2009). Silent plateau potentials in subthalamic neurons and their gating by cortical inputs - ProQuest. [unpublished thesis]. https://www.proquest.com/docview/304843482/797014A0BCD24FB2PQ/1?accountid=14505&sourcetype=Dissertations%20&%20Theses
Kassardjian, C.D., Tan, Y., Chung, J.J., Heskin, R., Peterson, M.J., & Broussard, D.M. (2005). The Site of a Motor Memory Shifts with Consolidation. Journal of Neuroscience, 25, 7979–7985. https://www.jneurosci.org/content/25/35/7979 http://doi.org/10.1523/JNEUROSCI.2215-05.2005
Kass, J.I., & Mintz, I.M. (2006). Silent plateau potentials, rhythmic bursts, and pacemaker firing: Three patterns of activity that coexist in quadristable subthalamic neurons. Proceedings of the National Academy of Sciences, 103, 183–188. https://www.pnas.org/doi/abs/10.1073/pnas.0506781102 http://doi.org/10.1073/pnas.0506781102
Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727. http://www.sciencedirect.com/science/article/pii/S0959438899000288 http://doi.org/10.1016/S0959-4388(99)00028-8
Kawato, M., & Gomi, H. (1992). A computational model of four regions of the cerebellum based on feedback-error learning. Biological cybernetics, 68, http://www.ncbi.nlm.nih.gov/pubmed/1486143
Kawato, M., Hayakawa, H., & Inui, T. (1993). A forward-inverse optics model of reciprocal connections between visual cortical areas. Network: Computation in Neural Systems, 4, 415–422. http://www.tandfonline.com/doi/abs/10.1088/0954-898X_4_4_001 http://doi.org/10.1088/0954-898X_4_4_001
Kebschull, J.M., Casoni, F., Consalez, G.G., Goldowitz, D., Hawkes, R., Ruigrok, T.J.H., Schilling, K., Wingate, R., Wu, J., Yeung, J., & Uusisaari, M.Y. (2024). Cerebellum Lecture: the Cerebellar Nuclei—Core of the Cerebellum. The Cerebellum, 23, 620–677. https://doi.org/10.1007/s12311-022-01506-0 http://doi.org/10.1007/s12311-022-01506-0
Kennerley, S.W., Behrens, T.E.J., & Wallis, J.D. (2011). Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neuroscience, 14, 1581–1589. https://www.nature.com/neuro/journal/v14/n12/full/nn.2961.html http://doi.org/10.1038/nn.2961
Ketzef, M., & Silberberg, G. (2021). Differential synaptic input to external globus pallidus neuronal subpopulations in vivo. Neuron, 109, 516-529.e4. https://www.sciencedirect.com/science/article/pii/S0896627320308849 http://doi.org/10.1016/j.neuron.2020.11.006
Khalil, A.J., Mansvelder, H.D., & Witter, L. (2022). Mesodiencephalic junction GABAergic inputs are processed separately from motor cortical inputs in the basilar pons. iScience, 25, https://www.cell.com/iscience/abstract/S2589-0042(22)00913-0 http://doi.org/10.1016/j.isci.2022.104641
Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., & Masquelier, T. (2018). STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks, 99, 56–67. https://www.sciencedirect.com/science/article/pii/S0893608017302903 http://doi.org/10.1016/j.neunet.2017.12.005
Kim, J.S., Greene, M.J., Zlateski, A., Lee, K., Richardson, M., Turaga, S.C., Purcaro, M., Balkam, M., Robinson, A., Behabadi, B.F., Campos, M., Denk, W., & Seung, H.S. (2014). Space–time wiring specificity supports direction selectivity in the retina. Nature, 509, 331–336. https://www.nature.com/articles/nature13240 http://doi.org/10.1038/nature13240
Kim, J., Kim, Y., Nakajima, R., Shin, A., Jeong, M., Park, A.H., Jeong, Y., Jo, S., Yang, S., Park, H., Cho, S., Cho, K., Shim, I., Chung, J.H., Paik, S., Augustine, G.J., & Kim, D. (2017). Inhibitory basal ganglia inputs induce excitatory motor signals in the thalamus. Neuron, 95, 1181-1196.e8. http://www.sciencedirect.com/science/article/pii/S0896627317307432 http://doi.org/10.1016/j.neuron.2017.08.028
Kim, J.J., Krupa, D.J., & Thompson, R.F. (1998). Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science (New York, N.Y.), 279, 570. http://www.ncbi.nlm.nih.gov/pubmed/9438852
Kimpo, R.R., Rinaldi, J.M., Kim, C.K., Payne, H.L., & Raymond, J.L. (2014). Gating of neural error signals during motor learning. eLife, 3, http://www.ncbi.nlm.nih.gov/pubmed/24755290
Kingma, D.P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs], http://arxiv.org/abs/1412.6980
Kirkwood, A., Rioult, M.G., & Bear, M.F. (1996). Experience-Dependent Modification of Synaptic Plasticity in Visual Cortex. Nature, 381, 526–528. http://www.ncbi.nlm.nih.gov/pubmed/8632826
Klaus, A., Martins, G.J., Paixao, V.B., Zhou, P., Paninski, L., & Costa, R.M. (2017). The spatiotemporal organization of the striatum encodes action space. Neuron, 95, 1171-1180.e7. http://doi.org/10.1016/j.neuron.2017.08.015
Klinzing, J.G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1598–1610. http://www.nature.com/articles/s41593-019-0467-3 http://doi.org/10.1038/s41593-019-0467-3
Kohn, A. (2007). Visual Adaptation: Physiology, Mechanisms, and Functional Benefits. Journal of Neurophysiology, 97, 3155–3164. http://jn.physiology.org/content/97/5/3155 http://doi.org/10.1152/jn.00086.2007
Kohonen, T. (1977). Associative Memory: A System Theoretical Approach. Springer-Verlag.
Kohonen, T. (1998). the Self-Organizing Map. Neurocomputing, 21, 1.
Kohonen, T., & Hari, R. (1999). Where the abstract feature maps of the brain might come from. Trends in neurosciences, 22, 135. http://www.ncbi.nlm.nih.gov/pubmed/10199639
Koralek, A.C., Costa, R.M., & Carmena, J.M. (2013). Temporally precise cell-specific coherence develops in corticostriatal networks during learning. Neuron, 79, 865–872. https://www.sciencedirect.com/science/article/pii/S0896627313005631 http://doi.org/10.1016/j.neuron.2013.06.047
Koshimizu, Y., Fujiyama, F., Nakamura, K.C., Furuta, T., & Kaneko, T. (2013). Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector. Journal of Comparative Neurology, 521, 2125–2146. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.23277 http://doi.org/10.1002/cne.23277
Kouneiher, F., Charron, S., & Koechlin, E. (2009). Motivation and cognitive control in the human prefrontal cortex. Nature neuroscience, 12, 659–669. http://www.ncbi.nlm.nih.gov/pubmed/19503087
Kramer, D.L., & McLaughlin, R.L. (2001). The Behavioral Ecology of Intermittent Locomotion1. American Zoologist, 41, 137–153. https://doi.org/10.1093/icb/41.2.137 http://doi.org/10.1093/icb/41.2.137
Kravitz, A., Freeze, B., Parker, P., Kay, K., Thwin, M., Deisseroth, K., & Kreitzer, A. (2010). Regulation of {P}arkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466, 622–626. http://www.nature.com/nature/journal/vaop/ncurrent/full/nature09159.html
Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis – connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, http://www.ncbi.nlm.nih.gov/pubmed/19104670
Kriete, T., Noelle, D.C., Cohen, J.D., & O'Reilly, R.C. (2013). Indirection and symbol-like processing in the prefrontal cortex and basal ganglia. Proceedings of the National Academy of Sciences U.S.A., 110, 16390–16395. http://www.ncbi.nlm.nih.gov/pubmed/24062434
Kritzer, M.F., & Goldman-Rakic, P.S. (1995). Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 359, 131–143. http://www.ncbi.nlm.nih.gov/pubmed/8557842
Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In F. Pereira, C.J.C. Burges, L. Bottou, & K.Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25 (pp. 1097–1105). Curran Associates, Inc. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Krotov, D., & Hopfield, J. (2021). Large Associative Memory Problem in Neurobiology and Machine Learning. http://arxiv.org/abs/2008.06996 http://doi.org/10.48550/arXiv.2008.06996
Krubitzer, L., Campi, K.L., & Cooke, D.F. (2011). All Rodents Are Not the Same: A Modern Synthesis of Cortical Organization. Brain Behavior and Evolution, 78, 51–93. https://doi.org/10.1159/000327320 http://doi.org/10.1159/000327320
Krystal, J.H., Abi-Saab, W., Perry, E., D’Souza, D.C., Liu, N., Gueorguieva, R., McDougall, L., Hunsberger, T., Belger, A., Levine, L., & Breier, A. (2005). Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology, 179, 303–309. https://doi.org/10.1007/s00213-004-1982-8 http://doi.org/10.1007/s00213-004-1982-8
Krystal, J.H., Anticevic, A., Yang, G.J., Dragoi, G., Driesen, N.R., Wang, X., & Murray, J.D. (2017). Impaired Tuning of Neural Ensembles and the Pathophysiology of Schizophrenia: A Translational and Computational Neuroscience Perspective. Biological Psychiatry, 81, 874–885. https://www.sciencedirect.com/science/article/pii/S0006322317300367 http://doi.org/10.1016/j.biopsych.2017.01.004
Kubota, K., & Niki, H. (1971). Prefrontal cortical unit activity and delayed alternation performance in monkeys. Journal of Neurophysiology, 34, 337–347. http://www.ncbi.nlm.nih.gov/pubmed/4997822
Kupchik, Y.M., & Kalivas, P.W. (2017). The Direct and Indirect Pathways of the Nucleus Accumbens are not What You Think. Neuropsychopharmacology, 42, 369–370. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143491/ http://doi.org/10.1038/npp.2016.160
Kupchik, Y.M., & Prasad, A.A. (2021). Ventral pallidum cellular and pathway specificity in drug seeking. Neuroscience & Biobehavioral Reviews, 131, 373–386. https://www.sciencedirect.com/science/article/pii/S0149763421003894 http://doi.org/10.1016/j.neubiorev.2021.09.007
Kuramoto, E., Ohno, S., Furuta, T., Unzai, T., Tanaka, Y.R., Hioki, H., & Kaneko, T. (2015). Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior–ventral lateral nuclear complex in the rat. Cerebral Cortex, 25, 221–235. https://academic.oup.com/cercor/article/25/1/221/369709 http://doi.org/10.1093/cercor/bht216
Kuramoto, E., Pan, S., Furuta, T., Tanaka, Y.R., Iwai, H., Yamanaka, A., Ohno, S., Kaneko, T., Goto, T., & Hioki, H. (2017). Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors. Journal of Comparative Neurology, 525, 166–185. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24054 http://doi.org/10.1002/cne.24054
Kuroda, S., Schweighofer, N., & Kawato, M. (2001). Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. Journal of Neuroscience, 21, 5693–5702. https://www.jneurosci.org/content/21/15/5693 http://doi.org/10.1523/JNEUROSCI.21-15-05693.2001
Lake, B.M., & Baroni, M. (2017). Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. arXiv:1711.00350 [cs], http://arxiv.org/abs/1711.00350
Laming, D.R.J. (1968). Information theory of choice reaction times. Academic Press.
Lamme, V.A.F. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10, 494–501. http://www.cell.com/article/S1364661306002373/abstract http://doi.org/10.1016/j.tics.2006.09.001
Lan, N., Chemla, E., & Katzir, R. (2024). Large Language Models and the Argument from the Poverty of the Stimulus. Linguistic Inquiry, 1–28. https://doi.org/10.1162/ling_a_00533 http://doi.org/10.1162/ling_a_00533
Larkum, M.E., Zhu, J.J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398, 338–341. https://www.nature.com/articles/18686 http://doi.org/10.1038/18686
Larsson, H.P. (2013). What Determines the Kinetics of the Slow Afterhyperpolarization (sAHP) in Neurons? Biophysical Journal, 104, 281–283. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552283/ http://doi.org/10.1016/j.bpj.2012.11.3832
Laszlovszky, T., Schlingloff, D., Hegedüs, P., Freund, T.F., Gulyás, A., Kepecs, A., & Hangya, B. (2020). Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types. Nature Neuroscience, 23, 992–1003. https://www.nature.com/articles/s41593-020-0648-0 http://doi.org/10.1038/s41593-020-0648-0
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html http://doi.org/10.1038/nature14539
LeDoux, J. (2000). Cognitive-Emotional Interactions: Listen to the brain. In R.D. Lane, & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 129–156). Oxford Univ. Press.
Leow, Y.N., Zhou, B., Sullivan, H.A., Barlowe, A.R., Wickersham, I.R., & Sur, M. (2022). Brain-wide mapping of inputs to the mouse lateral posterior (LP/Pulvinar) thalamus–anterior cingulate cortex network. Journal of Comparative Neurology, 530, 1992–2013. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.25317 http://doi.org/10.1002/cne.25317
Levy, W.B., & Steward, O. (1979). Synapses as associative memory elements in the hippocampal formation. Brain research, 175, 233–245. http://www.ncbi.nlm.nih.gov/pubmed/487154
Liang, H., Paxinos, G., & Watson, C. (2012). The red nucleus and the rubrospinal projection in the mouse. Brain Structure and Function, 217, 221–232. https://doi.org/10.1007/s00429-011-0348-3 http://doi.org/10.1007/s00429-011-0348-3
Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K., Pitkow, X., Urtasun, R., & Zemel, R. (2018). Reviving and Improving Recurrent Back-Propagation. In International Conference on Machine Learning (pp. 3082–3091). PMLR. http://proceedings.mlr.press/v80/liao18c.html
Lillicrap, T.P., & Santoro, A. (2019). Backpropagation through time and the brain. Current Opinion in Neurobiology, 55, 82–89. https://www.sciencedirect.com/science/article/pii/S0959438818302009 http://doi.org/10.1016/j.conb.2019.01.011
Lillicrap, T.P., Santoro, A., Marris, L., Akerman, C.J., & Hinton, G. (2020). Backpropagation and the brain. Nature Reviews Neuroscience, 21(6), 335–346. https://www.nature.com/articles/s41583-020-0277-3 http://doi.org/10.1038/s41583-020-0277-3
Li, W., Ma, L., Yang, G., & Gan, W. (2017). REM sleep selectively prunes and maintains new synapses in development and learning. Nature Neuroscience, 20(3), 427–437. http://www.nature.com/articles/nn.4479 http://doi.org/10.1038/nn.4479
Lim, S., & Goldman, M.S. (2014). Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control. Journal of Neuroscience, 34, 6790–6806. http://www.jneurosci.org/content/34/20/6790 http://doi.org/10.1523/JNEUROSCI.4602-13.2014
Lin, L. (1992). Reinforcement learning for robots using neural networks. [phd, Carnegie Mellon University]. ACM Digital Library.
Lindahl, M., & Kotaleski, J.H. (2016). Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model. eNeuro, 3, https://www.eneuro.org/content/3/6/ENEURO.0156-16.2016 http://doi.org/10.1523/ENEURO.0156-16.2016
Lindroos, R., Dorst, M.C., Du, K., Filipović, M., Keller, D., Ketzef, M., Kozlov, A.K., Kumar, A., Lindahl, M., Nair, A.G., Pérez-Fernández, J., Grillner, S., Silberberg, G., & Hellgren Kotaleski, J. (2018). Basal ganglia neuromodulation over multiple temporal and structural scales—simulations of direct pathway MSNs investigate the fast onset of dopaminergic effects and predict the role of Kv4.2. Frontiers in Neural Circuits, 12, https://www.frontiersin.org/articles/10.3389/fncir.2018.00003/full http://doi.org/10.3389/fncir.2018.00003
Linsley, D., Ashok, A.K., Govindarajan, L.N., Liu, R., & Serre, T. (2020). Stable and expressive recurrent vision models. arXiv:2005.11362 [cs], http://arxiv.org/abs/2005.11362
Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences, 86, 9574–9578. https://www.pnas.org/doi/abs/10.1073/pnas.86.23.9574 http://doi.org/10.1073/pnas.86.23.9574
Lisman, J. (1994). The CaM kinase II hypothesis for the storage of synaptic memory. Trends in Neurosciences, 17, 406–412. http://doi.org/10.1016/0166-2236(94)90014-0
Lisman, J.E., Fellous, J.M., & Wang, X.J. (1999). A role for {NMDA}-receptor channels in working memory. Nature Neuroscience, 1, 273–275. http://www.ncbi.nlm.nih.gov/pubmed/10195158
Llinás, R.R. (2009). Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience, 162, 797–804. https://www.sciencedirect.com/science/article/pii/S0306452209006526 http://doi.org/10.1016/j.neuroscience.2009.04.045
Llinás, R., Lang, E.J., & Welsh, J.P. (1997). The cerebellum, LTD, and memory: Alternative views. Learning & Memory, 3, 445–455. http://doi.org/10.1101/lm.3.6.445
Loyola, S., Hoogland, T.M., Hoedemaker, H., Romano, V., Negrello, M., & De Zeeuw, C.I. (2023). How inhibitory and excitatory inputs gate output of the inferior olive. eLife, 12, e83239. https://doi.org/10.7554/eLife.83239 http://doi.org/10.7554/eLife.83239
Lu, X., Miyachi, S., Ito, Y., Nambu, A., & Takada, M. (2007). Topographic distribution of output neurons in cerebellar nuclei and cortex to somatotopic map of primary motor cortex. European Journal of Neuroscience, 25, 2374–2382. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1460-9568.2007.05482.x http://doi.org/10.1111/j.1460-9568.2007.05482.x
MacLean, P.D. (1952). Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (Visceral brain) Electroencephalography and Clinical Neurophysiology, 4, 407–418. https://www.sciencedirect.com/science/article/pii/0013469452900734 http://doi.org/10.1016/0013-4694(52)90073-4
Magill, P.J., Sharott, A., Bevan, M.D., Brown, P., & Bolam, J.P. (2004). Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation. Journal of Neurophysiology, 92, 700–714. http://www.ncbi.nlm.nih.gov/pubmed/15044518
Mainen, Z.F., & Sejnowski, T.J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363. http://www.ncbi.nlm.nih.gov/pubmed/8684467
Mallet, N., Micklem, B.R., Henny, P., Brown, M.T., Williams, C., Bolam, J.P., Nakamura, K.C., & Magill, P.J. (2012). Dichotomous organization of the external globus pallidus. Neuron, 74, 1075–1086. http://www.ncbi.nlm.nih.gov/pubmed/22726837
Mallet, N., Schmidt, R., Leventhal, D., Chen, F., Amer, N., Boraud, T., & Berke, J.D. (2016). Arkypallidal cells send a stop signal to striatum. Neuron, 89, 308–316. http://www.sciencedirect.com/science/article/pii/S0896627315011198 http://doi.org/10.1016/j.neuron.2015.12.017
Mandelbaum, G., Taranda, J., Haynes, T.M., Hochbaum, D.R., Huang, K.W., Hyun, M., Venkataraju, K.U., Straub, C., Wang, W., Robertson, K., Osten, P., & Sabatini, B.L. (2019). Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron, 102, 636-652.e7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164542/ http://doi.org/10.1016/j.neuron.2019.02.035
Manning, C.D., Clark, K., Hewitt, J., Khandelwal, U., & Levy, O. (2020). Emergent linguistic structure in artificial neural networks trained by self-supervision. Proceedings of the National Academy of Sciences, 117, 30046–30054. https://www.pnas.org/doi/full/10.1073/pnas.1907367117 http://doi.org/10.1073/pnas.1907367117
Marini, G., Pianca, L., & Tredici, G. (1999). Descending projections arising from the parafascicular nucleus in rats: trajectory of fibers, projection pattern and mapping of terminations. Somatosensory & Motor Research, 16, 207–222. https://doi.org/10.1080/08990229970465 http://doi.org/10.1080/08990229970465
Markowitz, J.E., Gillis, W.F., Beron, C.C., Neufeld, S.Q., Robertson, K., Bhagat, N.D., Peterson, R.E., Peterson, E., Hyun, M., Linderman, S.W., Sabatini, B.L., & Datta, S.R. (2018). The striatum organizes 3D behavior via moment-to-moment action selection. Cell, 174, 44-58.e17. http://www.sciencedirect.com/science/article/pii/S0092867418305129 http://doi.org/10.1016/j.cell.2018.04.019
Markowitz, J.E., Gillis, W.F., Jay, M., Wood, J., Harris, R.W., Cieszkowski, R., Scott, R., Brann, D., Koveal, D., Kula, T., Weinreb, C., Osman, M.A.M., Pinto, S.R., Uchida, N., Linderman, S.W., Sabatini, B.L., & Datta, S.R. (2023). Spontaneous behaviour is structured by reinforcement without explicit reward. Nature, 614(7946), 108–117. https://www.nature.com/articles/s41586-022-05611-2 http://doi.org/10.1038/s41586-022-05611-2
Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., Kahou, G.A.A., Berger, T.K., Bilgili, A., Buncic, N., Chalimourda, A., Chindemi, G., Courcol, J., Delalondre, F., Delattre, V., Druckmann, S., Dumusc, R., Dynes, J., Eilemann, S., Gal, E., Gevaert, M.E., Ghobril, J., Gidon, A., Graham, J.W., Gupta, A., Haenel, V., Hay, E., Heinis, T., Hernando, J.B., Hines, M., Kanari, L., Keller, D., Kenyon, J., Khazen, G., Kim, Y., King, J.G., Kisvarday, Z., Kumbhar, P., Lasserre, S., Le Bé, J., Magalhães, B.R.C., Merchán-Pérez, A., Meystre, J., Morrice, B.R., Muller, J., Muñoz-Céspedes, A., Muralidhar, S., Muthurasa, K., Nachbaur, D., Newton, T.H., Nolte, M., Ovcharenko, A., Palacios, J., Pastor, L., Perin, R., Ranjan, R., Riachi, I., Rodríguez, J., Riquelme, J.L., Rössert, C., Sfyrakis, K., Shi, Y., Shillcock, J.C., Silberberg, G., Silva, R., Tauheed, F., Telefont, M., Toledo-Rodriguez, M., Tränkler, T., Van Geit, W., Díaz, J.V., Walker, R., Wang, Y., Zaninetta, S.M., DeFelipe, J., Hill, S.L., Segev, I., & Schürmann, F. (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 163, 456–492. http://doi.org/10.1016/j.cell.2015.09.029
Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology (London), 202, 437–470.
Marr, D. (1971). Simple Memory: A Theory for Archicortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 262, 23–81. http://rstb.royalsocietypublishing.org/content/262/841/23 http://doi.org/10.1098/rstb.1971.0078
Marr, D. (1977). Artificial Intelligence—A Personal View. Artificial Intelligence, 37–48.
Maslow, A.H. (1943). A Theory of Human Motivation. Psychological Review, 50, 370–396.
Mathewson, K., Gratton, G., Fabiani, M., Beck, D., & Ro, T. (2009). To see or not to see: Prestimulus alpha phase predicts visual awareness. The Journal of Neuroscience, 29, 2725–2732.
Mathy, A., Ho, S.S.N., Davie, J.T., Duguid, I.C., Clark, B.A., & Häusser, M. (2009). Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons. Neuron, 62, 388–399. https://www.cell.com/neuron/abstract/S0896-6273(09)00248-7 http://doi.org/10.1016/j.neuron.2009.03.023
Matsumoto, N., Minamimoto, T., Graybiel, A.M., & Kimura, M. (2001). Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. Journal of neurophysiology, 85, 960–976. http://www.ncbi.nlm.nih.gov/pubmed/11160526
Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429, 761–766. https://www.nature.com/articles/nature02617 http://doi.org/10.1038/nature02617
Mauk, M.D., & Buonomano, D.V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340. http://www.ncbi.nlm.nih.gov/pubmed/15217335
Mauk, M.D., Steinmetz, J.E., & Thompson, R.F. (1986). Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proceedings of the National Academy of Sciences, 83, 5349–5353. https://www.pnas.org/doi/abs/10.1073/pnas.83.14.5349 http://doi.org/10.1073/pnas.83.14.5349
Maylor, E. (1985). Facilitatory and inhibitory components of orienting in visual space. In M.I. Posner, & O.S.M. Marin (Eds.), Attention and Performance XI. Lawrence Erlbaum Associates.
McClelland, J.L. (1998). Connectionist Models and Bayesian Inference. In N. Chater, & M. Oaksford (Eds.), Rational Models of Cognitive Processes. Oxford University Press.
McClelland, J.L., Hill, F., Rudolph, M., Baldridge, J., & Schütze, H. (2020). Placing language in an integrated understanding system: Next steps toward human-level performance in neural language models. Proceedings of the National Academy of Sciences, 117, 25966–25974. http://www.pnas.org/content/117/42/25966 http://doi.org/10.1073/pnas.1910416117
McClelland, J.L., McNaughton, B.L., & O'Reilly, R.C. (1995). Why There Are Complementary Learning Systems in the Hippocampus and Neocortex: Insights from the Successes and Failures of Connectionist Models of Learning and Memory. Psychological Review, 102, 419–457. http://www.ncbi.nlm.nih.gov/pubmed/7624455
McClelland, J.L., & Rumelhart, D.E. (1986). A Distributed Model of Human Learning and Memory. In J.L. McClelland, D.E. Rumelhart, & P.R. Group (Eds.), Parallel Distributed Processing. Volume 2: Psychological and Biological Models (pp. 170–215). MIT Press.
McCormick, D.A., Clark, G.A., Lavond, D.G., & Thompson, R.F. (1982). Initial localization of the memory trace for a basic form of learning. Proceedings of the National Academy of Sciences, 79, 2731–2735. https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2731 http://doi.org/10.1073/pnas.79.8.2731
McCormick, D.A., & Thompson, R.F. (1984). Cerebellum: Essential Involvement in the Classically Conditioned Eyelid Response. Science, 223, 296–299. https://www.science.org/doi/abs/10.1126/science.6701513 http://doi.org/10.1126/science.6701513
McCormick, D.A., & Thompson, R.F. (1984). Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. Journal of Neuroscience, 4, 2811–2822. https://www.jneurosci.org/content/4/11/2811 http://doi.org/10.1523/JNEUROSCI.04-11-02811.1984
McElvain, L.E., Bagnall, M.W., Sakatos, A., & Lac, S. (2010). Bidirectional Plasticity Gated by Hyperpolarization Controls the Gain of Postsynaptic Firing Responses at Central Vestibular Nerve Synapses. Neuron, 68, 763–775. https://www.cell.com/neuron/abstract/S0896-6273(10)00767-1 http://doi.org/10.1016/j.neuron.2010.09.025
McFarland, N.R., & Haber, S.N. (2002). Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. The Journal of Neuroscience, 22, 8117–8132. http://www.ncbi.nlm.nih.gov/pubmed/12223566
McGrath, S.W., Russin, J., Pavlick, E., & Feiman, R. (2024). How Can Deep Neural Networks Inform Theory in Psychological Science? Current Directions in Psychological Science, 33, 325–333. http://doi.org/10.1177/09637214241268098
McKee, K., Crandell, I., Chaudhuri, R., & O'Reilly, R. (2022). Adaptive Synaptic Failure Enables Sampling from Posterior Predictive Distributions in the Brain. http://arxiv.org/abs/2210.01691 http://doi.org/10.48550/arXiv.2210.01691
Medina, J.F., & Lisberger, S.G. (2008). Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nature Neuroscience, 11, 1185–1192. https://www.nature.com/articles/nn.2197 http://doi.org/10.1038/nn.2197
Meng, C., Zhou, J., Papaneri, A., Peddada, T., Xu, K., & Cui, G. (2018). Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits. Neuron, 98, 707-717.e4. https://www.cell.com/neuron/abstract/S0896-6273(18)30296-4 http://doi.org/10.1016/j.neuron.2018.04.012
Meyer, D.E., Smith, J.E.K., Kornblum, S., Abrams, R.A., & Wright, C.E. (1990). Speed—Accuracy Tradeoffs in Aimed Movements: Toward a Theory of Rapid Voluntary Action. In Attention and Performance Xiii. Psychology Press.
Meyer, D.E., Smith, J.E., & Wright, C.E. (1982). Models for the speed and accuracy of aimed movements. Psychological Review, 89, 449–482. http://doi.org/10.1037/0033-295X.89.5.449
Miall, R.C., & Wolpert, D.M. (1996). Forward Models for Physiological Motor Control. Neural Netw, 9, 1265–1279. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd
Migliore, M., Hoffman, D., Magee, J., & Johnston, D. (1999). Role of an A-Type K+ Conductance in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons. Journal of Computational Neuroscience, 7, 5–15. https://doi.org/10.1023/A:1008906225285 http://doi.org/10.1023/A:1008906225285
Miller, E.K., & Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. http://www.ncbi.nlm.nih.gov/pubmed/11283309
Milstein, A.D., Li, Y., Bittner, K.C., Grienberger, C., Soltesz, I., Magee, J.C., & Romani, S. (2021). Bidirectional synaptic plasticity rapidly modifies hippocampal representations. eLife, 10, e73046. https://doi.org/10.7554/eLife.73046 http://doi.org/10.7554/eLife.73046
Mink, J.W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425. http://www.ncbi.nlm.nih.gov/pubmed/9004351
Minsky, M., & Papert, S.A. (1969). Perceptrons. MIT Press.
Miyake, A., & Shah, P. (Eds.) (1999). Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. Cambridge University Press.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518, 529–533. http://www.ncbi.nlm.nih.gov/pubmed/25719670
Moerland, T.M., Broekens, J., & Jonker, C.M. (2021). Model-based reinforcement learning: A survey. arXiv:2006.16712 [cs, stat], http://arxiv.org/abs/2006.16712
Moghaddam, B., & Adams, B.W. (1998). Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science, 281, 1349–1352. https://science.sciencemag.org/content/281/5381/1349 http://doi.org/10.1126/science.281.5381.1349
Mollick, J.A., Hazy, T.E., Krueger, K.A., Nair, A., Mackie, P., Herd, S.A., & O'Reilly, R.C. (2020). A systems-neuroscience model of phasic dopamine. Psychological Review, 127, 972–1021. http://doi.org/10.1037/rev0000199
Montagu, M.F.A. (1955). Time, Morphology, and Neoteny in the Evolution of Man. American Anthropologist, 57, 13–27. https://onlinelibrary.wiley.com/doi/abs/10.1525/aa.1955.57.1.02a00030 http://doi.org/10.1525/aa.1955.57.1.02a00030
Montague, P.R., Dayan, P., & Sejnowski, T.J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936–1947. http://www.ncbi.nlm.nih.gov/pubmed/8774460
Montgomery, J., & Perks, K. (2019). Understanding cerebellum in vertebrate neuroethology: From sensing in sharks and electric fish to motor sequences in movement and birdsong. Behavioral Neuroscience, 133, 267–281. http://doi.org/10.1037/bne0000317
Moroney, N., Fairchild, M.D., Hunt, R.W., Li, C., Luo, M.R., & Newman, T. (2002). The CIECAM02 Color Appearance Model. Color and Imaging Conference, 2002, 23–27.
Morrie, R.D., & Feller, M.B. (2018). A Dense Starburst Plexus Is Critical for Generating Direction Selectivity. Current Biology, 28, 1204-1212.e5. https://www.cell.com/current-biology/abstract/S0960-9822(18)30302-6 http://doi.org/10.1016/j.cub.2018.03.001
Morris, R.G.M., & Frey, U. (1997). Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352, 1489–1503. https://royalsocietypublishing.org/doi/abs/10.1098/rstb.1997.0136 http://doi.org/10.1098/rstb.1997.0136
Morton, J., & Johnson, M.H. (1991). CONSPEC and CONLERN: a two-process theory of infant face recognition. Psychological Review, 98, 164–181. http://www.ncbi.nlm.nih.gov/pubmed/2047512
Movellan, J.R., & McClelland, J.L. (1993). Learning Continuous Probability Distributions with Symmetric Diffusion Networks. Cognitive Science, 17, 463–496.
Mozer, M.C., Zemel, R.S., Behrmann, M., & Williams, C.K.I. (1992). Learning to segment images using dynamic feature binding. Neural Computation, 4, 650–665.
Mumford, D. (1991). On the computational architecture of the neocortex. Biological Cybernetics, 65, 135–145. https://link.springer.com/article/10.1007/BF00202389 http://doi.org/10.1007/BF00202389
Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biological Cybernetics, 66, 241–251. http://www.ncbi.nlm.nih.gov/pubmed/1540675
Musslick, S., & Cohen, J.D. (2021). Rationalizing constraints on the capacity for cognitive control. Trends in Cognitive Sciences, 25, 757–775. https://www.sciencedirect.com/science/article/pii/S1364661321001480 http://doi.org/10.1016/j.tics.2021.06.001
Musslick, S., Saxe, A., Hoskin, A., Sagiv, Y., Reichman, D., Petri, G., & Cohen, J. (2020). On the Rational Boundedness of Cognitive Control: Shared Versus Separated Representations. https://osf.io/jkhdf_v1 http://doi.org/10.31234/osf.io/jkhdf
Nadel, J.A., Pawelko, S.S., Scott, J.R., McLaughlin, R., Fox, M., Ghanem, M., Merwe, R., Hollon, N.G., Ramsson, E.S., & Howard, C.D. (2021). Optogenetic stimulation of striatal patches modifies habit formation and inhibits dopamine release. Scientific Reports, 11, 19847. https://www.nature.com/articles/s41598-021-99350-5 http://doi.org/10.1038/s41598-021-99350-5
Nair, A.G., Gutierrez-Arenas, O., Eriksson, O., Vincent, P., & Kotaleski, J.H. (2015). Sensing positive versus negative reward signals through adenylyl cyclase-coupled GPCRs in direct and indirect pathway striatal medium spiny neurons. Journal of Neuroscience, 35, 14017–14030. https://www.jneurosci.org/content/35/41/14017 http://doi.org/10.1523/JNEUROSCI.0730-15.2015
Najafi, F., & Medina, J.F. (2013). Beyond “all-or-nothing” climbing fibers: graded representation of teaching signals in Purkinje cells. Frontiers in Neural Circuits, 7, https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2013.00115/full http://doi.org/10.3389/fncir.2013.00115
Nakanishi, H., Kita, H., & Kitai, S.T. (1987). Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation. Brain Research, 437, 35–44. https://www.sciencedirect.com/science/article/pii/0006899387915241 http://doi.org/10.1016/0006-8993(87)91524-1
Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., & Sutskever, I. (2021). Deep double descent: where bigger models and more data hurt* Journal of Statistical Mechanics: Theory and Experiment, 2021, 124003. https://dx.doi.org/10.1088/1742-5468/ac3a74 http://doi.org/10.1088/1742-5468/ac3a74
Nambu, A. (2004). A new dynamic model of the cortico-basal ganglia loop. In Progress in Brain Research (pp. 461–466). Elsevier. https://www.sciencedirect.com/science/article/pii/S0079612303430434 http://doi.org/10.1016/S0079-6123(03)43043-4
Nambu, A., & Chiken, S. (2024). External segment of the globus pallidus in health and disease: Its interactions with the striatum and subthalamic nucleus. Neurobiology of Disease, 190, 106362. https://www.sciencedirect.com/science/article/pii/S0969996123003789 http://doi.org/10.1016/j.nbd.2023.106362
Nam, H.H., Jost, J.T., & Bavel, J.J.V. (2013). “Not for All the Tea in China!” Political Ideology and the Avoidance of Dissonance-Arousing Situations. PLOS ONE, 8, e59837. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059837 http://doi.org/10.1371/journal.pone.0059837
Nanda, N., Rajamanoharan, S., Kramár, J., & Shah, R. (2023). Fact Finding: Attempting to Reverse-Engineer Factual Recall on the Neuron Level (Post 1) https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
Neal, R.M. (1993). Probabilistic Inference Using Markov Chain Monte Carlo Methods.
Neely, R.M., Koralek, A.C., Athalye, V.R., Costa, R.M., & Carmena, J.M. (2018). Volitional modulation of primary visual cortex activity requires the basal ganglia. Neuron, 97, 1356-1368.e4. https://www.sciencedirect.com/science/article/pii/S089662731830076X http://doi.org/10.1016/j.neuron.2018.01.051
Neher, E., & Sakaba, T. (2008). Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release. Neuron, 59, 861–872. https://www.cell.com/neuron/abstract/S0896-6273(08)00742-3 http://doi.org/10.1016/j.neuron.2008.08.019
Nevado-Holgado, A.J., Mallet, N., Magill, P.J., & Bogacz, R. (2014). Effective connectivity of the subthalamic nucleus–globus pallidus network during Parkinsonian oscillations. The Journal of Physiology, 592, 1429–1455. https://onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2013.259721 http://doi.org/10.1113/jphysiol.2013.259721
Newcomer, J.W., Farber, N.B., Jevtovic-Todorovic, V., Selke, G., Melson, A.K., Hershey, T., Craft, S., & Olney, J.W. (1999). Ketamine-Induced NMDA Receptor Hypofunction as a Model of Memory Impairment and Psychosis. Neuropsychopharmacology, 20, 106–118. https://www.sciencedirect.com/science/article/pii/S0893133X98000670 http://doi.org/10.1016/S0893-133X(98)00067-0
Newell, A. (1990). Unified Theories of Cognition. Harvard University Press.
Newell, A., & Simon, H.A. (1972). Human Problem Solving. Prentice-Hall.
Newport, E.L. (1990). Maturational Constraints on Language Learning. Cognitive Science, 14, 11–28.
Nguyen, K.P., & Person, A.L. (2025). Cerebellar circuit computations for predictive motor control. Nature Reviews Neuroscience, 26, 538–553. https://www.nature.com/articles/s41583-025-00936-z http://doi.org/10.1038/s41583-025-00936-z
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual review of neuroscience, 32, http://www.ncbi.nlm.nih.gov/pubmed/19400715
Nieder, A., & Miller, E.K. (2004). Analog numerical representations in rhesus monkeys: evidence for parallel processing. Journal of cognitive neuroscience, 16, 889–901. http://www.ncbi.nlm.nih.gov/pubmed/15200715
Nieuwenhuys, R., & Puelles, L. (2015). Towards a New Neuromorphology. Springer.
Norman, K.A., & O'Reilly, R.C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychological Review, 110, 611–646. http://www.ncbi.nlm.nih.gov/pubmed/14599236
Nowlan, S.J. (1990). Maximum Likelihood Competitive Learning. In D.S. Touretzky (Ed.), Advances in Neural Information Processing Systems, 2 (pp. 574–582). Morgan Kaufmann.
Nowlan, S.J., & Hinton, G.E. (1993). A soft decision-directed LMS algorithm for blind equalization. IEEE Transactions on Communications, 41, 275–279.
Ohmae, S., & Medina, J.F. (2015). Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nature Neuroscience, 18, 1798–1803. https://www.nature.com/articles/nn.4167 http://doi.org/10.1038/nn.4167
Ohyama, T., Medina, J.F., Nores, W.L., & Mauk, M.D. (2003). Trying to understand the cerebellum well enough to build one. Annals of the New York Academy of Sciences, 978, 425–438. http://www.ncbi.nlm.nih.gov/pubmed/12582071
Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of mathematical biology, 15, 267–273. http://www.ncbi.nlm.nih.gov/pubmed/7153672
Oja, E. (1989). Neural networks, principal components, and subspaces. International Journal of Neural Systems, 1, 61–68. https://www.worldscientific.com/doi/10.1142/S0129065789000475
Okun, M., & Lampl, I. (2008). Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neuroscience, 11, 535–537. https://www.nature.com/articles/nn.2105 http://doi.org/10.1038/nn.2105
Okunomiya, T., Watanabe, D., Banno, H., Kondo, T., Imamura, K., Takahashi, R., & Inoue, H. (2025). Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion. Journal of Neuroscience, 45, https://www.jneurosci.org/content/45/4/e0457242024 http://doi.org/10.1523/JNEUROSCI.0457-24.2024
Olshausen, B.A., & Field, D.J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607. http://www.ncbi.nlm.nih.gov/pubmed/8637596
Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J., McCandlish, S., & Olah, C. (2022). In-context Learning and Induction Heads. http://arxiv.org/abs/2209.11895 http://doi.org/10.48550/arXiv.2209.11895
Öngür, D., & Price, J.L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206–219. http://www.ncbi.nlm.nih.gov/pubmed/10731217
Onodera, S., & Hicks, T.P. (1995). Patterns of transmitter labelling and connectivity of the cat's nucleus of Darkschewitsch: A wheat germ agglutinin-horseradish peroxidase and immunocytochemical study at light and electron microscopical levels. Journal of Comparative Neurology, 361, 553–573. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.903610402 http://doi.org/10.1002/cne.903610402
Oorschot, D.E. (1996). Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. The Journal of Comparative Neurology, 366, 580–599. http://www.ncbi.nlm.nih.gov/pubmed/8833111
O’Reilly, R.C. (2010). The {What} and {How} of prefrontal cortical organization. Trends in Neurosciences, 33, 355–361. http://www.sciencedirect.com/science/article/pii/S0166223610000767 http://doi.org/10.1016/j.tins.2010.05.002
O’Reilly, R.C. (2020). Unraveling the Mysteries of Motivation. Trends in Cognitive Sciences, http://www.sciencedirect.com/science/article/pii/S1364661320300681 http://doi.org/10.1016/j.tics.2020.03.001
O'Reilly, R.C. (1996). Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm. Neural Computation, 8, 895–938. https://www.mitpressjournals.org/doi/abs/10.1162/neco.1996.8.5.895 http://doi.org/https://doi.org/10.1162/neco.1996.8.5.895
O'Reilly, R.C. (1996). The Leabra Model of Neural Interactions and Learning in the Neocortex. [unpublished Ph.D. Thesis, Carnegie Mellon University].
O'Reilly, R.C., Braver, T.S., & Cohen, J.D. (1999). A Biologically Based Computational Model of Working Memory. In A. Miyake, & P. Shah (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (pp. 375–411). Cambridge University Press.
O'Reilly, R.C., Busby, R.S., & Soto, R. (2003). Three Forms of Binding and their Neural Substrates: Alternatives to Temporal Synchrony. In A. Cleeremans (Ed.), The Unity of Consciousness: Binding, Integration, and Dissociation (pp. 168–192). Oxford University Press.
O'Reilly, R.C., & Frank, M.J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18, 283–328. http://www.ncbi.nlm.nih.gov/pubmed/16378516
O'Reilly, R.C., Frank, M.J., Hazy, T.E., & Watz, B. (2007). PVLV: The primary value and learned value Pavlovian learning algorithm. Behavioral Neuroscience, 121, 31–49. http://www.ncbi.nlm.nih.gov/pubmed/17324049
O'Reilly, R.C., Hazy, T.E., Mollick, J., Mackie, P., & Herd, S.A. (2014). Goal-driven cognition in the brain: A computational framework. arXiv:1404.7591 [q-bio], http://arxiv.org/abs/1404.7591
O'Reilly, R.C., & Munakata, Y. (2000). Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. MIT Press.
O'Reilly, R.C., Munakata, Y., Frank, M.J., Hazy, T.E., & Contributors (2012). Computational Cognitive Neuroscience. Wiki Book, 1st Edition, URL: http://ccnbook.colorado.edu. http://ccnbook.colorado.edu
O’Reilly, R.C., Nair, A., Russin, J.L., & Herd, S.A. (2020). How Sequential Interactive Processing Within Frontostriatal Loops Supports a Continuum of Habitual to Controlled Processing. Frontiers in Psychology, 11, 380. https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00380/full http://doi.org/10.3389/fpsyg.2020.00380
O’Reilly, R.C., Ranganath, C., & Russin, J.L. (2022). The Structure of Systematicity in the Brain. Current Directions in Psychological Science, 31, 124–130. https://doi.org/10.1177/09637214211049233 http://doi.org/10.1177/09637214211049233
O'Reilly, R.C., & Rudy, J.W. (2001). Conjunctive Representations in Learning and Memory: Principles of Cortical and Hippocampal Function. Psychological Review, 108, 311–345. http://www.ncbi.nlm.nih.gov/pubmed/11381832
O'Reilly, R.C., Russin, J.L., Zolfaghar, M., & Rohrlich, J. (2021). Deep Predictive Learning in Neocortex and Pulvinar. Journal of Cognitive Neuroscience, 33, 1158–1196. https://doi.org/10.1162/jocn_a_01708 http://doi.org/10.1162/jocn_a_01708
O'Reilly, R.C., Wyatte, D., Herd, S.A., Mingus, B., & Jilk, D.J. (2013). Recurrent Processing during Object Recognition. Frontiers in Psychology, 4, http://www.ncbi.nlm.nih.gov/pubmed/23554596
Oscarsson, O. (1979). Functional units of the cerebellum - sagittal zones and microzones. Trends in Neurosciences, 2, 143–145. https://www.cell.com/trends/neurosciences/abstract/0166-2236(79)90057-2 http://doi.org/10.1016/0166-2236(79)90057-2
Oscasson, O. (1980). Functional organization of olivary projection to the cerebellar anterior lobe. The inferior olivary nucleus, anatomy and physiology, 279–289. https://cir.nii.ac.jp/crid/1572543025577012096
Oswald, J.V., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., & Vladymyrov, M. (2023). Transformers Learn In-Context by Gradient Descent. In Proceedings of the 40th International Conference on Machine Learning (pp. 35151–35174). PMLR. https://proceedings.mlr.press/v202/von-oswald23a.html
Otero-Millan, J., Macknik, S.L., & Martinez-Conde, S. (2012). Microsaccades and Blinks Trigger Illusory Rotation in the “Rotating Snakes” Illusion. Journal of Neuroscience, 32, 6043–6051. https://www.jneurosci.org/content/32/17/6043 http://doi.org/10.1523/JNEUROSCI.5823-11.2012
Otsuka, T., Abe, T., Tsukagawa, T., & Song, W. (2004). Conductance-Based Model of the Voltage-Dependent Generation of a Plateau Potential in Subthalamic Neurons. Journal of Neurophysiology, 92, 255–264. https://journals.physiology.org/doi/full/10.1152/jn.00508.2003 http://doi.org/10.1152/jn.00508.2003
Ottenheimer, D.J., Bari, B.A., Sutlief, E., Fraser, K.M., Kim, T.H., Richard, J.M., Cohen, J.Y., & Janak, P.H. (2020). A quantitative reward prediction error signal in the ventral pallidum. Nature Neuroscience, 23, 1267–1276. https://www.nature.com/articles/s41593-020-0688-5 http://doi.org/10.1038/s41593-020-0688-5
Özcan, O.O., Wang, X., Binda, F., Dorgans, K., Zeeuw, C.I.D., Gao, Z., Aertsen, A., Kumar, A., & Isope, P. (2020). Differential Coding Strategies in Glutamatergic and GABAergic Neurons in the Medial Cerebellar Nucleus. Journal of Neuroscience, 40, 159–170. https://www.jneurosci.org/content/40/1/159 http://doi.org/10.1523/JNEUROSCI.0806-19.2019
Pamukcu, A., Cui, Q., Xenias, H.S., Berceau, B.L., Augustine, E.C., Fan, I., Chalasani, S., Hantman, A.W., Lerner, T.N., Boca, S.M., & Chan, C.S. (2020). Parvalbumin+ and Npas1+ Pallidal Neurons Have Distinct Circuit Topology and Function. Journal of Neuroscience, 40, 7855–7876. https://www.jneurosci.org/content/40/41/7855 http://doi.org/10.1523/JNEUROSCI.0361-20.2020
Papez, J.W. (1937). A proposed mechanism of emotion. Archives of Neurology & Psychiatry, 38, 725–743. http://doi.org/10.1001/archneurpsyc.1937.02260220069003
Park, J., Coddington, L.T., & Dudman, J.T. (2020). Basal ganglia circuits for action specification. Annual Review of Neuroscience, 43, 485–507. http://doi.org/10.1146/annurev-neuro-070918-050452
Parnaudeau, S., Bolkan, S.S., & Kellendonk, C. (2018). The mediodorsal thalamus: An essential partner of the prefrontal cortex for cognition. Biological Psychiatry, 83, 648–656. http://www.sciencedirect.com/science/article/pii/S0006322317321935 http://doi.org/10.1016/j.biopsych.2017.11.008
Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological bulletin, 116, 220–244. http://www.ncbi.nlm.nih.gov/pubmed/7972591
Pateria, S., Subagdja, B., Tan, A., & Quek, C. (2021). Hierarchical Reinforcement Learning: A Comprehensive Survey. ACM Comput. Surv., 54, 109:1–109:35. https://dl.acm.org/doi/10.1145/3453160 http://doi.org/10.1145/3453160
Pauli, W.M., Hazy, T.E., & O'Reilly, R.C. (2012). Expectancy, ambiguity, and behavioral flexibility: separable and complementary roles of the orbital frontal cortex and amygdala in processing reward expectancies. Journal of Cognitive Neuroscience, 24, 351–366. http://www.ncbi.nlm.nih.gov/pubmed/22004047
Pauli, W.M., O’Reilly, R.C., Yarkoni, T., & Wager, T.D. (2016). Regional specialization within the human striatum for diverse psychological functions. Proceedings of the National Academy of Sciences, 113, 1907–1912. http://www.pnas.org/content/113/7/1907 http://doi.org/10.1073/pnas.1507610113
Pezzulo, G., Rigoli, F., & Friston, K.J. (2018). Hierarchical active inference: A theory of motivated control. Trends in Cognitive Sciences, 22, 294–306. http://www.sciencedirect.com/science/article/pii/S1364661318300226 http://doi.org/10.1016/j.tics.2018.01.009
Piaget, J. (1941). Le m'echanisme du d'eveloppement mental et les lois du groupement des op'eration. Arch. Psych., Gen`eve, 28, 215–285.
Piantadosi, S.T. (2023). Modern language models refute Chomsky’s approach to language. From fieldwork to linguistic theory: A tribute to Dan Everett, 353–414. https://books.google.com/books?hl=en&lr=&id=BrcpEQAAQBAJ&oi=fnd&pg=PA353&ots=hQR6BV-AUL&sig=YWna5wy_SeF8i_NhGuav6_D_6xs
Pineda, F.J. (1988). Dynamics and Architecture for Neural Computation. Journal of Complexity, 4, 216–245.
Piron, C., Kase, D., Topalidou, M., Goillandeau, M., Orignac, H., N'Guyen, T., Rougier, N., & Boraud, T. (2016). The globus pallidus pars interna in goal-oriented and routine behaviors: Resolving a long-standing paradox. Movement Disorders, 31, 1146–1154. https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.26542 http://doi.org/10.1002/mds.26542
Plaat, A., Kosters, W., & Preuss, M. (2023). High-accuracy model-based reinforcement learning, a survey. Artificial Intelligence Review, 56, 9541–9573. https://doi.org/10.1007/s10462-022-10335-w http://doi.org/10.1007/s10462-022-10335-w
Plutchik, R. (2001). The Nature of Emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. American Scientist, 89, 344–350. http://www.jstor.org/stable/27857503
Poirazi, P., Brannon, T., & Mel, B.W. (2003). Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell. Neuron, 37, 977–987. https://www.sciencedirect.com/science/article/pii/S089662730300148X http://doi.org/10.1016/S0896-6273(03)00148-X
Poirazi, P., & Papoutsi, A. (2020). Illuminating dendritic function with computational models. Nature Reviews Neuroscience, 21(6), 303–321. http://www.nature.com/articles/s41583-020-0301-7 http://doi.org/10.1038/s41583-020-0301-7
Posner, M.I. (1980). Orienting of Attention. Quarterly Journal of Experimental Psychology, 32, 3–25.
Posner, M.I., Walker, J.A., Friedrich, F.J., & Rafal, R.D. (1984). Effects of Parietal Lobe Injury on Covert Orienting of Visual Attention. Journal of Neuroscience, 4, 1863–1874.
Pouget, A., Beck, J.M., Ma, W.J., & Latham, P.E. (2013). Probabilistic brains: knowns and unknowns. Nature Neuroscience, 16, 1170–1178. http://doi.org/10.1038/nn.3495
Powers, W.T. (1973). Behavior: The Control of Perception. Hawthorne.
Prager, E.M., & Plotkin, J.L. (2019). Compartmental function and modulation of the striatum. Journal of Neuroscience Research, jnr.24522. https://onlinelibrary.wiley.com/doi/10.1002/jnr.24522 http://doi.org/10.1002/jnr.24522
Press, W.H., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T. (1988). Numerical Recipies In C: The Art of Scientific Computing. Cambridge University Press.
Pribram, K.H. (1960). A Review of Theory in Physiological Psychology. Annual Review of Psychology, 11, 1–40. https://www.annualreviews.org/content/journals/10.1146/annurev.ps.11.020160.000245 http://doi.org/10.1146/annurev.ps.11.020160.000245
Pugh, J.R., & Raman, I.M. (2006). Potentiation of Mossy Fiber EPSCs in the Cerebellar Nuclei by NMDA Receptor Activation followed by Postinhibitory Rebound Current. Neuron, 51, 113–123. https://www.cell.com/neuron/abstract/S0896-6273(06)00413-2 http://doi.org/10.1016/j.neuron.2006.05.021
Pugh, J.R., & Raman, I.M. (2008). Mechanisms of Potentiation of Mossy Fiber EPSCs in the Cerebellar Nuclei by Coincident Synaptic Excitation and Inhibition. Journal of Neuroscience, 28, 10549–10560. https://www.jneurosci.org/content/28/42/10549 http://doi.org/10.1523/JNEUROSCI.2061-08.2008
Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435, 1102–1107. https://www.nature.com/articles/nature03687 http://doi.org/10.1038/nature03687
Quy, P.N., Fujita, H., Sakamoto, Y., Na, J., & Sugihara, I. (2011). Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex. Journal of Comparative Neurology, 519, 874–899. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.22555 http://doi.org/10.1002/cne.22555
Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30, 1138–1168. https://journals.physiology.org/doi/abs/10.1152/jn.1967.30.5.1138 http://doi.org/10.1152/jn.1967.30.5.1138
Ramnani, N. (2006). The primate cortico-cerebellar system: anatomy and function. Nature reviews. Neuroscience, 7, 511–522. http://www.ncbi.nlm.nih.gov/pubmed/16791141
Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Adler, T., Gruber, L., Holzleitner, M., Pavlović, M., Sandve, G.K., Greiff, V., Kreil, D., Kopp, M., Klambauer, G., Brandstetter, J., & Hochreiter, S. (2021). Hopfield Networks is All You Need. http://arxiv.org/abs/2008.02217 http://doi.org/10.48550/arXiv.2008.02217
Rao, R.P., & Ballard, D.H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87. http://www.ncbi.nlm.nih.gov/pubmed/10195184 http://doi.org/10.1038/4580
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–107.
Ratcliff, R., & Rouder, J.N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9, 347.
Raymond, J.L., & Lisberger, S.G. (1998). Neural Learning Rules for the Vestibulo-Ocular Reflex. Journal of Neuroscience, 18, 9112–9129. https://www.jneurosci.org/content/18/21/9112 http://doi.org/10.1523/JNEUROSCI.18-21-09112.1998
Raymond, J.L., Lisberger, S.G., & Mauk, M.D. (1996). The cerebellum: a neuronal learning machine? Science (New York, N.Y.), 272, 1126. http://www.ncbi.nlm.nih.gov/pubmed/8638157
Raymond, J.L., & Medina, J.F. (2018). Computational Principles of Supervised Learning in the Cerebellum. Annual Review of Neuroscience, 41, 233–253. https://www.annualreviews.org/content/journals/10.1146/annurev-neuro-080317-061948 http://doi.org/10.1146/annurev-neuro-080317-061948
Reber, A.S. (1967). Implicit Learning of Artificial Grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855–863.
Redgrave, P., Prescott, T.J., & Gurney, K. (1999). Is the short-latency dopamine response too short to signal reward error? Trends in neurosciences, 22, 146–151. http://www.ncbi.nlm.nih.gov/pubmed/10203849
Redish, A.D., Elga, A.N., & Touretzky, D.S. (1996). A coupled attractor model of the rodent head direction system. Network: computation in neural systems, 7, 671. https://iopscience.iop.org/article/10.1088/0954-898X/7/4/004/meta
Redondo, R.L., & Morris, R.G.M. (2011). Making memories last: the synaptic tagging and capture hypothesis. Nature Reviews Neuroscience, 12, 17–30. http://www.nature.com/nrn/journal/v12/n1/abs/nrn2963.html http://doi.org/10.1038/nrn2963
Rescorla, R.A., & Wagner, A.R. (1972). A theory of Pavlovian conditioning: Variation in the effectiveness of reinforcement and non-reinforcement. In A.H. Black, & W.F. Prokasy (Eds.), Classical Conditioning II: Theory and Research (pp. 64–99). Appleton-Century-Crofts.
Reymann, K.G., & Frey, J.U. (2007). The late maintenance of hippocampal LTP: Requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology, 52, 24–40. https://www.sciencedirect.com/science/article/pii/S0028390806002401 http://doi.org/10.1016/j.neuropharm.2006.07.026
Rich, P., Blokpoel, M., Haan, R., Otworowska, M., Sweers, M., Wareham, T., & Rooij, I. (2021). Naturalism, tractability and the adaptive toolbox. Synthese, 198, 5749–5784. https://doi.org/10.1007/s11229-019-02431-2 http://doi.org/10.1007/s11229-019-02431-2
Rich, E.L., & Wallis, J.D. (2016). Decoding subjective decisions from orbitofrontal cortex. Nature Neuroscience, 19, 973–980. http://www.nature.com/neuro/journal/v19/n7/full/nn.4320.html?WT.ec_id=NEURO-201607&spMailingID=51711028&spUserID=MTc2NjQ4NzIwMwS2&spJobID=944051338&spReportId=OTQ0MDUxMzM4S0 http://doi.org/10.1038/nn.4320
Rikhye, R.V., Gilra, A., & Halassa, M.M. (2018). Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nature Neuroscience, 21(12), 1753–1763. http://www.nature.com/articles/s41593-018-0269-z http://doi.org/10.1038/s41593-018-0269-z
Roberts, A.C., & Clarke, H.F. (2019). Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proceedings of the National Academy of Sciences, 116, 26297–26304. https://www.pnas.org/doi/10.1073/pnas.1902288116 http://doi.org/10.1073/pnas.1902288116
Roberts, B.M., Shaffer, C.L., Seymour, P.A., Schmidt, C.J., Williams, G.V., & Castner, S.A. (2010). Glycine transporter inhibition reverses ketamine-induced working memory deficits. NeuroReport, 21, 390–394. https://journals.lww.com/neuroreport/Fulltext/2010/03310/Glycine_transporter_inhibition_reverses.15.aspx http://doi.org/10.1097/WNR.0b013e3283381a4e
Rogers, T.T., & McClelland, J.L. (2004). Semantic Cognition: A Parallel Distributed Processing Approach. MIT Press.
Root, D.H., Melendez, R.I., Zaborszky, L., & Napier, T.C. (2015). The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Progress in Neurobiology, 130, 29–70. https://www.sciencedirect.com/science/article/pii/S0301008215000271 http://doi.org/10.1016/j.pneurobio.2015.03.005
Rosenblatt, F. (1959). Two theorems of statistical separability in the Perceptron. In Mechanisation of Thought Processes: Proceedings of a Symposium Held at the National Physical Laboratory, Nov. 1958, Vol. 1 (pp. 421–456). HM Stationary Office.
Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan.
Rovó, Z., Ulbert, I., & Acsády, L. (2012). Drivers of the primate thalamus. Journal of Neuroscience, 32, 17894–17908. http://www.jneurosci.org/content/32/49/17894 http://doi.org/10.1523/JNEUROSCI.2815-12.2012
Rowland, N.C., & Jaeger, D. (2005). Coding of Tactile Response Properties in the Rat Deep Cerebellar Nuclei. Journal of Neurophysiology, 94, 1236–1251. https://journals.physiology.org/doi/full/10.1152/jn.00285.2005 http://doi.org/10.1152/jn.00285.2005
Rubin, R., Abbott, L.F., & Sompolinsky, H. (2017). Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity. Proceedings of the National Academy of Sciences, 114, E9366-E9375. https://www.pnas.org/doi/abs/10.1073/pnas.1705841114 http://doi.org/10.1073/pnas.1705841114
Rudebeck, P.H., & Murray, E.A. (2014). The orbitofrontal oracle: Cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron, 84, 1143–1156. http://www.sciencedirect.com/science/article/pii/S0896627314009969 http://doi.org/10.1016/j.neuron.2014.10.049
Rudy, B., Fishell, G., Lee, S., & Hjerling-Leffler, J. (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Developmental Neurobiology, 71, 45–61. http://onlinelibrary.wiley.com/doi/abs/10.1002/dneu.20853 http://doi.org/10.1002/dneu.20853
Ruigrok, T., & Voogd, J. (2000). Organization of projections from the inferior olive to the cerebellar nuclei in the rat. Journal of Comparative Neurology, 426, 209–228. https://onlinelibrary.wiley.com/doi/abs/10.1002/1096-9861%2820001016%29426%3A2%3C209%3A%3AAID-CNE4%3E3.0.CO%3B2-0 http://doi.org/10.1002/1096-9861(20001016)426:2<209::AID-CNE4>3.0.CO;2-0
Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.
Rumelhart, D.E., & McClelland, J.L. (1986). PDP Models and General Issues in Cognitive Science. In D.E. Rumelhart, J.L. McClelland, & P.R. Group (Eds.), Parallel Distributed Processing. Volume 1: Foundations (pp. 110–146). MIT Press.
Rumelhart, D.E., & Zipser, D. (1985). Feature discovery by competitive learning* Cognitive Science, 9, 75–112. http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog0901_5/abstract http://doi.org/10.1207/s15516709cog0901_5
Rushworth, M.F.S., Behrens, T.E.J., Rudebeck, P.H., & Walton, M.E. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences, 11, 168–176. http://www.ncbi.nlm.nih.gov/pubmed/17337237
Russell, S.J., & Norvig, P. (2016). Artificial intelligence: a modern approach. pearson. https://thuvienso.hoasen.edu.vn/handle/123456789/8967
Russin, J.L., Jo, J., O'Reilly, R.C., & Bengio, Y. (2019). Compositional generalization in a deep seq2seq model by separating syntax and semantics. arXiv:1904.09708 [cs, stat], http://arxiv.org/abs/1904.09708
Russin, J., O’Reilly, R.C., & Bengio, Y. (2020). Deep learning needs a prefrontal cortex. Work Bridging AI Cogn Sci, 107, 1. https://baicsworkshop.github.io/pdf/BAICS_10.pdf
Rutherford, J.G., Zuk-Harper, A., & Gwyn, D.G. (1989). A comparison of the distribution of the cerebellar and cortical connections of the nucleus of Darkschewitsch (ND) in the cat: a study using anterograde and retrograde HRP tracing techniques. Anatomy and Embryology, 180, 485–496. https://doi.org/10.1007/BF00305124 http://doi.org/10.1007/BF00305124
Sabatini, B.L., Oertner, T.G., & Svoboda, K. (2002). The life cycle of Ca2+ ions in dendritic spines. Neuron, 33, 439–452. https://www.sciencedirect.com/science/article/pii/S0896627302005731 http://doi.org/10.1016/S0896-6273(02)00573-1
Saddoris, M.P., Gallagher, M., & Schoenbaum, G. (2005). Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron, 46, 321–331. http://www.ncbi.nlm.nih.gov/pubmed/15848809
Saga, Y., Richard, A., Sgambato-Faure, V., Hoshi, E., Tobler, P.N., & Tremblay, L. (2016). Ventral Pallidum Encodes Contextual Information and Controls Aversive Behaviors. Cerebral Cortex, bhw107. http://cercor.oxfordjournals.org/content/early/2016/04/22/cercor.bhw107 http://doi.org/10.1093/cercor/bhw107
Sakata, S., & Harris, K.D. (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64, 404–418. http://www.ncbi.nlm.nih.gov/pubmed/19914188
Samuel, A.L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3, 210–229. https://ieeexplore.ieee.org/abstract/document/5392560 http://doi.org/10.1147/rd.33.0210
Sanborn, A.N. (2017). Types of approximation for probabilistic cognition: Sampling and variational. Brain and Cognition, 112, 98–101. https://www.sciencedirect.com/science/article/pii/S0278262615300038 http://doi.org/10.1016/j.bandc.2015.06.008
Sanchez-Vives, M.V., Nowak, L.G., & McCormick, D.A. (2000). Cellular Mechanisms of Long-Lasting Adaptation in Visual Cortical Neurons In Vitro. Journal of Neuroscience, 20, 4286–4299. http://www.jneurosci.org/content/20/11/4286
Sanders, H., Berends, M., Major, G., Goldman, M.S., & Lisman, J.E. (2013). NMDA and GABAB (KIR) Conductances: The “Perfect Couple” for Bistability. Journal of Neuroscience, 33, 424–429. http://www.jneurosci.org/content/33/2/424 http://doi.org/10.1523/JNEUROSCI.1854-12.2013
Sanger, T.D. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2, 459–473.
Sato, F., Parent, M., Levesque, M., & Parent, A. (2000). Axonal branching pattern of neurons of the subthalamic nucleus in primates. Journal of Comparative Neurology, 424, 142–152. http://onlinelibrary.wiley.com/doi/abs/10.1002/1096-9861%2820000814%29424%3A1%3C142%3A%3AAID-CNE10%3E3.0.CO%3B2-8 http://doi.org/https://doi.org/10.1002/1096-9861(20000814)424:1<142::AID-CNE10>3.0.CO;2-8
Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., Rivera, H., Bien, E., Baum, M., Bortolin, L., Wang, S., Goeva, A., Nemesh, J., Kamitaki, N., Brumbaugh, S., Kulp, D., & McCarroll, S.A. (2018). Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell, 174, 1015-1030.e16. https://www.cell.com/cell/abstract/S0092-8674(18)30955-3 http://doi.org/10.1016/j.cell.2018.07.028
Scellier, B., & Bengio, Y. (2017). Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Frontiers in Computational Neuroscience, 11, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415673/ http://doi.org/10.3389/fncom.2017.00024
Schapiro, A.C., Rogers, T.T., Cordova, N.I., Turk-Browne, N.B., & Botvinick, M.M. (2013). Neural representations of events arise from temporal community structure. Nature Neuroscience, 16, 486–492. http://www.ncbi.nlm.nih.gov/pubmed/23416451
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. http://www.sciencedirect.com/science/article/pii/S0893608014002135 http://doi.org/10.1016/j.neunet.2014.09.003
Schmidhuber, J., Gers, F., & Eck, D. (2002). Learning nonregular languages: A comparison of simple recurrent networks and LSTM. Neural Computation, 14, 2039–2042. http://www.ncbi.nlm.nih.gov/pubmed/12184841
Schmitt, L.I., Wimmer, R.D., Nakajima, M., Happ, M., Mofakham, S., & Halassa, M.M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature, 545, 219–223. https://www.nature.com/articles/nature22073 http://doi.org/10.1038/nature22073
Schneider-Mizell, C.M., Bodor, A.L., Brittain, D., Buchanan, J., Bumbarger, D.J., Elabbady, L., Gamlin, C., Kapner, D., Kinn, S., Mahalingam, G., Seshamani, S., Suckow, S., Takeno, M., Torres, R., Yin, W., Dorkenwald, S., Bae, J.A., Castro, M.A., Halageri, A., Jia, Z., Jordan, C., Kemnitz, N., Lee, K., Li, K., Lu, R., Macrina, T., Mitchell, E., Mondal, S.S., Mu, S., Nehoran, B., Popovych, S., Silversmith, W., Turner, N.L., Wong, W., Wu, J., Reimer, J., Tolias, A.S., Seung, H.S., Reid, R.C., Collman, F., & Costa, N.M. (2025). Inhibitory specificity from a connectomic census of mouse visual cortex. Nature, 640, 448–458. https://www.nature.com/articles/s41586-024-07780-8 http://doi.org/10.1038/s41586-024-07780-8
Schneider, W., & Shiffrin, R.M. (1977). Controlled and Automatic Human Information Processing: I. Detection, Search, and Attention. Psychological Review, 84, 1–66.
Schoenbaum, G., Roesch, M.R., Stalnaker, T.A., & Takahashi, Y.K. (2009). A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature Reviews Neuroscience, 10, 885–892. http://www.ncbi.nlm.nih.gov/pubmed/19904278
Schraudolph, N.N. (1998). Centering Neural Network Gradient Factors. In G.B. Orr, & K. Müller (Eds.), Neural Networks: Tricks of the Trade (pp. 207–226). Springer. https://doi.org/10.1007/3-540-49430-8_11 http://doi.org/10.1007/3-540-49430-8_11
Schultz, W., Dayan, P., & Montague, P.R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599. http://www.ncbi.nlm.nih.gov/pubmed/9054347
Schwab, B.C., Kase, D., Zimnik, A., Rosenbaum, R., Codianni, M.G., Rubin, J.E., & Turner, R.S. (2020). Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia–thalamic communication. PLOS Biology, 18, e3000829. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000829 http://doi.org/10.1371/journal.pbio.3000829
Seth, A.K., & Bayne, T. (2022). Theories of consciousness. Nature Reviews Neuroscience, 23(7), 439–452. https://www.nature.com/articles/s41583-022-00587-4 http://doi.org/10.1038/s41583-022-00587-4
Shadlen, M.N., & Newsome, W.T. (2001). Neural Basis of a Perceptual Decision in the Parietal Cortex (Area LIP) of the Rhesus Monkey. Journal of Neurophysiology, 86, 1916–1936. https://journals.physiology.org/doi/full/10.1152/jn.2001.86.4.1916 http://doi.org/10.1152/jn.2001.86.4.1916
Shadlen, M.N., & Newsome, W.T. (1994). Noise, neural codes and cortical organization. Current opinion in neurobiology, 4, 569–579. http://www.ncbi.nlm.nih.gov/pubmed/7812147
Shadlen, M.N., & Newsome, W.T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18, 3870. http://www.ncbi.nlm.nih.gov/pubmed/9570816
Shadmehr, R. (2020). Population coding in the cerebellum: a machine learning perspective. Journal of Neurophysiology, 124, 2022–2051. https://journals.physiology.org/doi/full/10.1152/jn.00449.2020 http://doi.org/10.1152/jn.00449.2020
Shadmehr, R., Smith, M.A., & Krakauer, J.W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108. http://doi.org/10.1146/annurev-neuro-060909-153135
Shannon, C.E. (1948). A Mathematical Theory of Communication. Bell Systems Technical Journal, 27, 623–656.
Shapley, R., & Hawken, M.J. (2011). Color in the Cortex: single- and double-opponent cells. Vision Research, 51, 701–717. http://www.sciencedirect.com/science/article/pii/S0042698911000526 http://doi.org/10.1016/j.visres.2011.02.012
Sharp, P.E., Blair, H.T., & Brown, M. (1996). Neural network modeling of the hippocampal formation spatial signals and their possible role in navigation: A modular approach. Hippocampus, 6, 720–734. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291098-1063%281996%296%3A6%3C720%3A%3AAID-HIPO14%3E3.0.CO%3B2-2 http://doi.org/10.1002/(SICI)1098-1063(1996)6:6<720::AID-HIPO14>3.0.CO;2-2
Shen, W., Flajolet, M., Greengard, P., & Surmeier, D.J. (2008). Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity. Science, 321, 848–851. https://www.science.org/doi/full/10.1126/science.1160575 http://doi.org/10.1126/science.1160575
Shenhav, A., Botvinick, M.M., & Cohen, J.D. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79, 217–240. http://www.ncbi.nlm.nih.gov/pubmed/23889930
Sherman, S.M., & Guillery, R.W. (2006). Exploring the Thalamus and Its Role in Cortical Function. MIT Press. http://www.scholarpedia.org/article/Thalamus
Sherman, S.M., & Usrey, W.M. (2024). A reconsideration of the core and matrix classification of thalamocortical projections. Journal of Neuroscience, 44, https://www.jneurosci.org/content/44/24/e0163242024 http://doi.org/10.1523/JNEUROSCI.0163-24.2024
Shiffrin, R.M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127–190.
Shinagawa, K., & Yamada, K. (2025). Extending homeostasis to thought dynamics for a comprehensive explanation of mind-wandering. Scientific Reports, 15, 8677. https://www.nature.com/articles/s41598-025-92561-0 http://doi.org/10.1038/s41598-025-92561-0
Shinoda, Y., Sugiuchi, Y., Futami, T., & Izawa, R. (1992). Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. Journal of neurophysiology, 67, 547–560. http://www.ncbi.nlm.nih.gov/pubmed/1578244
Shouval, H.Z., Wang, S.S., & Wittenberg, G.M. (2010). Spike timing dependent plasticity: A consequence of more fundamental learning rules. Frontiers in Computational Neuroscience, 4, http://www.ncbi.nlm.nih.gov/pubmed/20725599
Shull, R.L. (2011). Bouts, Changeovers, and Units of Operant Behavior. European Journal of Behavior Analysis, 12, 49–72. https://doi.org/10.1080/15021149.2011.11434355 http://doi.org/10.1080/15021149.2011.11434355
Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S., & Nagao, S. (2006). Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience, 139, 767–777. https://www.ibroneuroscience.org/article/S0306-4522(05)01487-9/abstract http://doi.org/10.1016/j.neuroscience.2005.12.035
Shwartz-Ziv, R., & Tishby, N. (2017). Opening the Black Box of Deep Neural Networks via Information. http://arxiv.org/abs/1703.00810 http://doi.org/10.48550/arXiv.1703.00810
Sidibé, M., & Smith, Y. (1996). Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey. The Journal of Comparative Neurology, 365, 445–465. http://www.ncbi.nlm.nih.gov/pubmed/8822181
Silva, N.T., Ramírez-Buriticá, J., Pritchett, D.L., & Carey, M.R. (2024). Climbing fibers provide essential instructive signals for associative learning. Nature Neuroscience, 27, 940–951. https://www.nature.com/articles/s41593-024-01594-7 http://doi.org/10.1038/s41593-024-01594-7
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484–489. https://www.nature.com/articles/nature16961 http://doi.org/10.1038/nature16961
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550, 354–359. https://www-nature-com.colorado.idm.oclc.org/articles/nature24270 http://doi.org/10.1038/nature24270
Simon, H.A. (1956). Rational choice and the structure of the environment. Psychological Review, 63, 129–138. http://www.ncbi.nlm.nih.gov/pubmed/13310708
Simoncelli, E.P., & Olshausen, B.A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216. https://www.annualreviews.org/content/journals/10.1146/annurev.neuro.24.1.1193 http://doi.org/10.1146/annurev.neuro.24.1.1193
Simpson, J.I., Wylie, D.R., & Zeeuw, C.I.D. (1996). On climbing fiber signals and their consequence(s) Behavioral and Brain Sciences, 19, 384–398. https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/abs/on-climbing-fiber-signals-and-their-consequences/AB7A6192A7709A33F3DA0AB6E226FE97 http://doi.org/10.1017/S0140525X00081486
Skaggs, W., Knierim, J., Kudrimoti, H., & McNaughton, B. (1994). A Model of the Neural Basis of the Rat' s Sense of Direction. In Advances in Neural Information Processing Systems. MIT Press. https://proceedings.neurips.cc/paper/1994/hash/024d7f84fff11dd7e8d9c510137a2381-Abstract.html
Smith, Y., Raju, D.V., Pare, J., & Sidibe, M. (2004). The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends in Neurosciences, 27, 520–527. http://www.ncbi.nlm.nih.gov/pubmed/15331233
Smolensky, P. (1986). Information Processing in Dynamical Systems: Foundations of Harmony Theory. In D.E. Rumelhart, J.L. McClelland, & P.R. Group (Eds.), Parallel Distributed Processing. Volume 1: Foundations (pp. 282–317). MIT Press.
Solomon, S.G., & Lennie, P. (2007). The machinery of colour vision. Nature Reviews Neuroscience, 8, 276–286. http://www.nature.com/nrn/journal/v8/n4/abs/nrn2094.html http://doi.org/10.1038/nrn2094
Sommer, M.A., & Wurtz, R.H. (2000). Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. Journal of Neurophysiology, 83, 1979–2001. http://www.ncbi.nlm.nih.gov/pubmed/10758109
Spear, L.P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24, 417–463. https://www.sciencedirect.com/science/article/pii/S0149763400000142 http://doi.org/10.1016/S0149-7634(00)00014-2
Spellman, T., Rigotti, M., Ahmari, S.E., Fusi, S., Gogos, J.A., & Gordon, J.A. (2015). Hippocampal–prefrontal input supports spatial encoding in working memory. Nature, 522(7556), 309–314. https://www.nature.com/articles/nature14445 http://doi.org/10.1038/nature14445
Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews. Neuroscience, 9, 201–221. http://www.ncbi.nlm.nih.gov/pubmed/18270515
Stephenson-Jones, M., Kardamakis, A.A., Robertson, B., & Grillner, S. (2013). Independent circuits in the basal ganglia for the evaluation and selection of actions. Proceedings of the National Academy of Sciences of the USA, Early edition, 1–10. http://www.ncbi.nlm.nih.gov/pubmed/24003130
Stokes, K.A., & Best, P.J. (1990). Mediodorsal thalamic lesions impair “Reference” and “working” memory in rats. Physiology & Behavior, 47, 471–476. https://www.sciencedirect.com/science/article/pii/003193849090111G http://doi.org/10.1016/0031-9384(90)90111-G
Stone, M. (1960). Models for Choice-Reaction Time. Psychometrika, 25, 251–260. https://www.cambridge.org/core/journals/psychometrika/article/abs/models-for-choicereaction-time/4BA8E902DBAD412CCF9B193F80FECF0E http://doi.org/10.1007/BF02289729
Sugihara, I. (2011). Compartmentalization of the Deep Cerebellar Nuclei Based on Afferent Projections and Aldolase C Expression. The Cerebellum, 10, 449–463. https://doi.org/10.1007/s12311-010-0226-1 http://doi.org/10.1007/s12311-010-0226-1
Sugihara, I., & Shinoda, Y. (2004). Molecular, Topographic, and Functional Organization of the Cerebellar Cortex: A Study with Combined Aldolase C and Olivocerebellar Labeling. Journal of Neuroscience, 24, 8771–8785. https://www.jneurosci.org/content/24/40/8771 http://doi.org/10.1523/JNEUROSCI.1961-04.2004
Summerfield, C., & Lange, F.P. (2014). Expectation in perceptual decision making: neural and computational mechanisms. Nature Reviews Neuroscience, 15, 745–756. https://www.nature.com/nrn/journal/v15/n11/full/nrn3838.html http://doi.org/10.1038/nrn3838
Summerfield, C., Luyckx, F., & Sheahan, H. (2020). Structure learning and the posterior parietal cortex. Progress in Neurobiology, 184, 101717. http://www.sciencedirect.com/science/article/pii/S0301008219303351 http://doi.org/10.1016/j.pneurobio.2019.101717
Surchev, L., Nazwar, T.A., Weisheit, G., & Schilling, K. (2007). Developmental increase of total cell numbers in the murine cerebellum. The Cerebellum, 6, 315–320. https://doi.org/10.1080/14734220601169699 http://doi.org/10.1080/14734220601169699
Suryanarayana, S.M., Hellgren Kotaleski, J., Grillner, S., & Gurney, K.N. (2019). Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia. Neural Networks, 109, 113–136. http://www.sciencedirect.com/science/article/pii/S0893608018302880 http://doi.org/10.1016/j.neunet.2018.10.003
Sutton, R.S. (1988). Learning to Predict by the Method of Temporal Differences. Machine Learning, 3, 9–44.
Sutton, R.S. (1991). Dyna, an integrated architecture for learning, planning, and reacting. SIGART Bull., 2, 160–163. https://dl.acm.org/doi/10.1145/122344.122377 http://doi.org/10.1145/122344.122377
Sutton, R.S., & Barto, A. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88, 135–170. http://www.ncbi.nlm.nih.gov/pubmed/7291377
Sutton, R.S., & Barto, A.G. (1998). Reinforcement Learning: An Introduction. MIT Press. http://www.cs.ualberta.ca/ sutton/book/ebook/the-book.html
Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112, 181–211.
Swadlow, H.A. (2000). Information Flow along Neocortical Axons. In Time and the Brain. CRC Press.
Swadlow, H.A. (1990). Efferent neurons and suspected interneurons in S-1 forelimb representation of the awake rabbit: receptive fields and axonal properties. Journal of Neurophysiology, 63, 1477–1498. https://journals.physiology.org/doi/abs/10.1152/jn.1990.63.6.1477 http://doi.org/10.1152/jn.1990.63.6.1477
Swenson, R.S., & Castro, A.J. (1983). The afferent connections of the inferior olivary complex in rats. An anterograde study using autoradiographic and axonal degeneration techniques. Neuroscience, 8, 259–275. https://www.sciencedirect.com/science/article/pii/0306452283900647 http://doi.org/10.1016/0306-4522(83)90064-7
Tachibana, Y., & Hikosaka, O. (2012). The primate ventral pallidum encodes expected reward value and regulates motor action. Neuron, 76, http://www.ncbi.nlm.nih.gov/pubmed/23177966
Tachibana, Y., Kita, H., Chiken, S., Takada, M., & Nambu, A. (2008). Motor cortical control of internal pallidal activity through glutamatergic and GABAergic inputs in awake monkeys. European Journal of Neuroscience, 27, 238–253. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1460-9568.2007.05990.x http://doi.org/10.1111/j.1460-9568.2007.05990.x
Tanaka, J., Horiike, Y., Matsuzaki, M., Miyazaki, T., Ellis-Davies, G.C.R., & Kasai, H. (2008). Protein Synthesis and Neurotrophin-Dependent Structural Plasticity of Single Dendritic Spines. Science, 319, 1683–1687. https://www.science.org/doi/full/10.1126/science.1152864 http://doi.org/10.1126/science.1152864
Tanaka, H., Ishikawa, T., & Kakei, S. (2019). Neural evidence of the cerebellum as a state predictor. Cerebellum (London, England), 18, 349–371. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517560/ http://doi.org/10.1007/s12311-018-0996-4
Tanaka, H., Ishikawa, T., Lee, J., & Kakei, S. (2020). The Cerebro-Cerebellum as a Locus of Forward Model: A Review. Frontiers in Systems Neuroscience, 14, https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2020.00019/full http://doi.org/10.3389/fnsys.2020.00019
Taube, J.S. (2007). The Head Direction Signal: Origins and Sensory-Motor Integration. Annual Review of Neuroscience, 30, 181–207. https://www.annualreviews.org/content/journals/10.1146/annurev.neuro.29.051605.112854 http://doi.org/10.1146/annurev.neuro.29.051605.112854
Taverna, S., Ilijic, E., & Surmeier, D.J. (2008). Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. Journal of Neuroscience, 28, 5504–5512. http://www.jneurosci.org/cgi/content/abstract/28/21/5504
ten Brinke, M.M., Boele, H., Spanke, J.K., Potters, J., Kornysheva, K., Wulff, P., IJpelaar, A.C.H.G., Koekkoek, S.K.E., & De Zeeuw, C.I. (2015). Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice. Cell Reports, 13, 1977–1988. https://www.cell.com/cell-reports/abstract/S2211-1247(15)01246-2 http://doi.org/10.1016/j.celrep.2015.10.057
Tenenbaum, J.B., Kemp, C., Griffiths, T.L., & Goodman, N.D. (2011). How to grow a mind: statistics, structure, and abstraction. Science, 331, 1279–1285. http://www.ncbi.nlm.nih.gov/pubmed/21393536
Tenney, I., Das, D., & Pavlick, E. (2019). BERT Rediscovers the Classical NLP Pipeline. http://arxiv.org/abs/1905.05950 http://doi.org/10.48550/arXiv.1905.05950
Teune, T.M., Burg, J., & Ruigrok, T.J.H. (1995). Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Research, 673, 313–319. https://www.sciencedirect.com/science/article/pii/000689939401431G http://doi.org/10.1016/0006-8993(94)01431-G
Thompson-Schill, S.L., Ramscar, M., & Chrysikou, E.G. (2009). Cognition without control: when a little frontal lobe goes a long way. Current directions in psychological science, 18, 259–263. http://journals.sagepub.com/doi/10.1111/j.1467-8721.2009.01648.x http://doi.org/10.1111/j.1467-8721.2009.01648.x
Thompson, R.F. (1986). The neruobiology of learning and memory. Science, 233, 941–947.
Thomson, A.M. (2010). Neocortical layer 6, a review. Frontiers in Neuroanatomy, 4, http://www.ncbi.nlm.nih.gov/pubmed/20556241
Thomson, A.M., & Destexhe, A. (1999). Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience, 92, 1193–1215. http://www.sciencedirect.com/science/article/pii/S0306452299000214 http://doi.org/10.1016/S0306-4522(99)00021-4
Thorndike, E.L. (1898). Animal Intelligence: an experimental study of associative processes in animals. Psychological Monographs, 2, Whole No. 8..
Thorpe, S., Delorme, A., & Van Rullen, R. (2001). Spike-based strategies for rapid processing. Neural networks, 14, 715–725. http://www.ncbi.nlm.nih.gov/pubmed/11665765
Titley, H.K., Kislin, M., Simmons, D.H., Wang, S.S., & Hansel, C. (2019). Complex spike clusters and false-positive rejection in a cerebellar supervised learning rule. The Journal of Physiology, 597, 4387–4406. https://onlinelibrary.wiley.com/doi/abs/10.1113/JP278502 http://doi.org/10.1113/JP278502
Tolman, E.C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208. http://www.ncbi.nlm.nih.gov/pubmed/18870876 http://doi.org/10.1037/h0061626
Tomasello, M. (2001). The Cultural Origins of Human Cognition. Harvard University Press.
Tononi, G., & Cirelli, C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Research Bulletin, 62, 143–150. https://www.sciencedirect.com/science/article/pii/S0361923003002594 http://doi.org/10.1016/j.brainresbull.2003.09.004
Torrado Pacheco, A., Bottorff, J., Gao, Y., & Turrigiano, G.G. (2021). Sleep promotes downward firing rate homeostasis. Neuron, 109, 530-544.e6. https://www.sciencedirect.com/science/article/pii/S0896627320308606 http://doi.org/10.1016/j.neuron.2020.11.001
Treisman, A. (1977). Focused attention in the perception and retrieval of multidimensional stimuli. Perception and Psychophysics, 22, 1–11.
Treisman, A.M., & Gelade, G. (1980). A Feature-Integration Theory of Attention. Cognitive Psychology, 12, 97–136.
Tsang, E. (2014). Foundations of Constraint Satisfaction: Computation in Cognitive Science. Academic Press.
Tukker, J.J., Taylor, W.R., & Smith, R.G. (2004). Direction selectivity in a model of the starburst amacrine cell. Visual Neuroscience, 21, 611–625. https://www.cambridge.org/core/journals/visual-neuroscience/article/direction-selectivity-in-a-model-of-the-starburst-amacrine-cell/BEFF3097D9C22BE07CFA6F5AA3BE4095 http://doi.org/10.1017/S0952523804214109
Tullis, J.E., & Bayer, K.U. (2023). Distinct synaptic pools of DAPK1 differentially regulate activity-dependent synaptic CaMKII accumulation. iScience, 26, https://www.cell.com/iscience/abstract/S2589-0042(23)00800-3 http://doi.org/10.1016/j.isci.2023.106723
Tunstall, M.J., Oorschot, D.E., Kean, A., & Wickens, J.R. (2002). Inhibitory interactions between spiny projection neurons in the rat striatum. Journal of Neurophysiology, 88, 1263–1269. http://www.ncbi.nlm.nih.gov/pubmed/12205147
Turing, A.M. (1936). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42, 230–265. https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.230 http://doi.org/10.1112/plms/s2-42.1.230
Turner, R.S., & Desmurget, M. (2010). Basal ganglia contributions to motor control: a vigorous tutor. Current Opinion in Neurobiology, 20, 704–716. http://www.sciencedirect.com/science/article/pii/S095943881000142X http://doi.org/10.1016/j.conb.2010.08.022
Turrigiano, G.G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell, 135, 422–435. http://www.ncbi.nlm.nih.gov/pubmed/18984155
Ungerleider, L.G., & Mishkin, M. (1982). Two Cortical Visual Systems. In D.J. Ingle, M.A. Goodale, & R.J.W. Mansfield (Eds.), The Analysis of Visual Behavior (pp. 549–586). MIT Press.
Urakubo, H., Honda, M., Froemke, R.C., & Kuroda, S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. The Journal of Neuroscience, 28, 3310–3323. http://www.ncbi.nlm.nih.gov/pubmed/18367598
Uusisaari, M., & Knöpfel, T. (2008). GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Neuroscience, 156, 537–549. https://www.sciencedirect.com/science/article/pii/S0306452208011287 http://doi.org/10.1016/j.neuroscience.2008.07.060
Uusisaari, M., & Knöpfel, T. (2010). GlyT2+ Neurons in the Lateral Cerebellar Nucleus. The Cerebellum, 9, 42–55. https://doi.org/10.1007/s12311-009-0137-1 http://doi.org/10.1007/s12311-009-0137-1
Uusisaari, M., & Knöpfel, T. (2011). Functional Classification of Neurons in the Mouse Lateral Cerebellar Nuclei. The Cerebellum, 10, 637–646. https://doi.org/10.1007/s12311-010-0240-3 http://doi.org/10.1007/s12311-010-0240-3
Uusisaari, M.Y., & Knöpfel, T. (2012). Diversity of Neuronal Elements and Circuitry in the Cerebellar Nuclei. The Cerebellum, 11, 420–421. https://doi.org/10.1007/s12311-011-0350-6 http://doi.org/10.1007/s12311-011-0350-6
Bosch, R., Lambregts, B., Määttä, J., Hofmans, L., Papadopetraki, D., Westbrook, A., Verkes, R., Booij, J., & Cools, R. (2022). Striatal dopamine dissociates methylphenidate effects on value-based versus surprise-based reversal learning. Nature Communications, 13, 4962. https://www.nature.com/articles/s41467-022-32679-1 http://doi.org/10.1038/s41467-022-32679-1
Want, J.J.L., & Voogd, J. (1987). Ultrastructural identification and localization of climbing fiber terminals in the fastigial nucleus of the cat. Journal of Comparative Neurology, 258, 81–90. https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.902580106 http://doi.org/10.1002/cne.902580106
Van Harreveld, A., & Fifkova, E. (1975). Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Experimental Neurology, 49, 736–749. https://www.sciencedirect.com/science/article/pii/0014488675900552 http://doi.org/10.1016/0014-4886(75)90055-2
Rooij, I., Wright, C.D., & Wareham, T. (2012). Intractability and the use of heuristics in psychological explanations. Synthese, 187, 471–487. https://doi.org/10.1007/s11229-010-9847-7 http://doi.org/10.1007/s11229-010-9847-7
VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7, 207–213. http://www.ncbi.nlm.nih.gov/pubmed/12757822
Schouwenburg, M.R., Ouden, H.E.M., & Cools, R. (2010). The human basal ganglia modulate frontal-posterior connectivity during attention shifting. The Journal of neuroscience, 30, http://www.ncbi.nlm.nih.gov/pubmed/20660273
Schouwenburg, M.R., Ouden, H.E.M., & Cools, R. (2015). Selective Attentional Enhancement and Inhibition of Fronto-Posterior Connectivity by the Basal Ganglia During Attention Switching. Cerebral Cortex, 25, 1527–1534. https://doi.org/10.1093/cercor/bht345 http://doi.org/10.1093/cercor/bht345
Vapnik, V.N., & Chervonenkis, A. (1971). On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory of Probability and Its Applications, 16, 264–280.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, �., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 5998–6008). Curran Associates, Inc. http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
Vecera, S.P., & Farah, M.J. (1994). Does visual attention select objects or locations? Journal of Experimental Psychology: General, 123, 146–160.
Verfaellie, M., Rapcsak, S.Z., & Heilman, K.M. (1990). Impaired shifting of attention in Balint's syndrome. Brain and Cognition, 12, 195–204.
Vidal, R., Bruna, J., Giryes, R., & Soatto, S. (2017). Mathematics of Deep Learning. http://arxiv.org/abs/1712.04741 http://doi.org/10.48550/arXiv.1712.04741
Voges, K., Wu, B., Post, L., Schonewille, M., & De Zeeuw, C.I. (2017). Mechanisms underlying vestibulo-cerebellar motor learning in mice depend on movement direction. The Journal of Physiology, 595, 5301–5326. https://onlinelibrary.wiley.com/doi/abs/10.1113/JP274346 http://doi.org/10.1113/JP274346
Von Neumann, J. (1945). First Draft of a Report on the EDVAC. document.
Wald, A. (1947). Sequential analysis. John Wiley.
Wald, A., & Wolfowitz, J. (1948). Optimum Character of the Sequential Probability Ratio Test. The Annals of Mathematical Statistics, 19, 326–339. https://www.jstor.org/stable/2235638
Wallace, M.L., Saunders, A., Huang, K.W., Philson, A.C., Goldman, M., Macosko, E.Z., McCarroll, S.A., & Sabatini, B.L. (2017). Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia. Neuron, 94, 138-152.e5. https://www.cell.com/neuron/abstract/S0896-6273(17)30200-3 http://doi.org/10.1016/j.neuron.2017.03.017
Wallén-Mackenzie, �., Dumas, S., Papathanou, M., Martis Thiele, M.M., Vlcek, B., König, N., & Björklund, �.K. (2020). Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures. Communications Biology, 3, 338. https://www.nature.com/articles/s42003-020-1028-8 http://doi.org/10.1038/s42003-020-1028-8
Wang, S.S., Denk, W., & Häusser, M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nature Neuroscience, 3, 1266–1273. https://www.nature.com/articles/nn1200_1266 http://doi.org/10.1038/81792
Wang, J., Liu, S.H., Haditsch, U., Tu, W.H., Cochrane, K., Ahmadian, G., Tran, L., Paw, J., Wang, Y.T., & Mansuy, I. (2003). Interaction of Calcineurin and Type-A GABA Receptor gamma2 Subunits Produces Long-Term Depression at CA1 Inhibitory Synapses. Journal of Neuroscience, 23, 826–836.
Wang, Y., Markram, H., Goodman, P.H., Berger, T.K., Ma, J., & Goldman-Rakic, P.S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9, 534–542. http://doi.org/10.1038/nn1670
Wang, W., Nakadate, K., Masugi-Tokita, M., Shutoh, F., Aziz, W., Tarusawa, E., Lorincz, A., Molnár, E., Kesaf, S., Li, Y., Fukazawa, Y., Nagao, S., & Shigemoto, R. (2014). Distinct cerebellar engrams in short-term and long-term motor learning. Proceedings of the National Academy of Sciences, 111, E188-E193. https://www.pnas.org/doi/abs/10.1073/pnas.1315541111 http://doi.org/10.1073/pnas.1315541111
Wang, X., Novello, M., Gao, Z., Ruigrok, T.J.H., & De Zeeuw, C.I. (2022). Input and output organization of the mesodiencephalic junction for cerebro-cerebellar communication. Journal of Neuroscience Research, 100, 620–637. https://onlinelibrary.wiley.com/doi/abs/10.1002/jnr.24993 http://doi.org/10.1002/jnr.24993
Wang, H., Stradtman, G.G., Wang, X., & Gao, W. (2008). A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proceedings of the National Academy of Sciences, 105, 16791–16796. https://www.pnas.org/content/105/43/16791 http://doi.org/10.1073/pnas.0804318105
Wang, M., Yang, Y., Wang, C., Gamo, N.J., Jin, L.E., Mazer, J.A., Morrison, J.H., Wang, X., & Arnsten, A.F.T. (2013). NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron, 77, 736–749. http://www.sciencedirect.com/science/article/pii/S089662731300038X http://doi.org/10.1016/j.neuron.2012.12.032
Warstadt, A., & Bowman, S.R. (2022). What Artificial Neural Networks Can Tell Us about Human Language Acquisition. In Algebraic Structures in Natural Language. CRC Press.
Webb, T.W., Frankland, S.M., Altabaa, A., Segert, S., Krishnamurthy, K., Campbell, D., Russin, J., Giallanza, T., O’Reilly, R., Lafferty, J., & Cohen, J.D. (2024). The relational bottleneck as an inductive bias for efficient abstraction. Trends in Cognitive Sciences, https://www.sciencedirect.com/science/article/pii/S1364661324000809 http://doi.org/10.1016/j.tics.2024.04.001
Wei, W. (2018). Neural Mechanisms of Motion Processing in the Mammalian Retina. Annual Review of Vision Science, 4, 165–192. https://www.annualreviews.org/content/journals/10.1146/annurev-vision-091517-034048 http://doi.org/10.1146/annurev-vision-091517-034048
Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. [unpublished thesis, Harvard University].
Werbos, P.J. (1988). Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1, 339–356. https://www.sciencedirect.com/science/article/pii/089360808890007X http://doi.org/10.1016/0893-6080(88)90007-X
Werbos, P. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78, 1550–1560. http://doi.org/10.1109/5.58337
Whittington, J.C.R., & Bogacz, R. (2017). An approximation of the error backpropagation algorithm in a predictive coding network with local hebbian synaptic plasticity. Neural Computation, 29, 1229–1262. https://doi.org/10.1162/NECO_a_00949 http://doi.org/10.1162/NECO_a_00949
Widrow, B., & Hoff, M.E. (1960). Adaptive Switching Circuits. In Institute of Radio Engineers, Western Electronic Show and Convention, Convention Record, Part 4 (pp. 96–104).
Widrow, B., & Stearns, S.D. (1985). Adaptive Signal Processing. Prentice-Hall.
Wilhelm, M., Sych, Y., Fomins, A., Alatorre Warren, J.L., Lewis, C., Serratosa Capdevila, L., Boehringer, R., Amadei, E.A., Grewe, B., O’Connor, E.C., Hall, B.J., & Helmchen, F. (2023). Striatum-projecting prefrontal cortex neurons support working memory maintenance. Nature Communications, 14, 7016. https://www.nature.com/articles/s41467-023-42777-3 http://doi.org/10.1038/s41467-023-42777-3
Wolfe, J.M. (2010). Visual search. Current Biology, 20, R346-R349. http://www.sciencedirect.com/science/article/pii/S0960982210001594 http://doi.org/10.1016/j.cub.2010.02.016
Woodruff-Pak, D.S. (2006). Stereological estimation of Purkinje neuron number in C57BL/6 mice and its relation to associative learning. Neuroscience, 141, 233–243. https://www.sciencedirect.com/science/article/pii/S0306452206004222 http://doi.org/10.1016/j.neuroscience.2006.03.070
Wu, J., Kim, Y.J., Dacey, D.M., Troy, J.B., & Smith, R.G. (2023). Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell. Visual Neuroscience, 40, E003. https://www.cambridge.org/core/journals/visual-neuroscience/article/two-mechanisms-for-direction-selectivity-in-a-model-of-the-primate-starburst-amacrine-cell/6C688BA235ED1FE58BBD8BCDDB8C5B59 http://doi.org/10.1017/S0952523823000019
Wu, H., Sugihara, I., & Shinoda, Y. (1999). Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. Journal of Comparative Neurology, 411, 97–118. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9861%2819990816%29411%3A1%3C97%3A%3AAID-CNE8%3E3.0.CO%3B2-O http://doi.org/10.1002/(SICI)1096-9861(19990816)411:1<97::AID-CNE8>3.0.CO;2-O
Xiang, Z., Huguenard, J.R., & Prince, D.A. (1998). Cholinergic switching within neocortical inhibitory networks. Science (New York, N.Y.), 281, 985–988. http://www.ncbi.nlm.nih.gov/pubmed/9703513
Xiao, K., Li, Y., Chitwood, R.A., & Magee, J.C. (2023). A critical role for CaMKII in behavioral timescale synaptic plasticity in hippocampal CA1 pyramidal neurons. Science Advances, 9, eadi3088. https://www.science.org/doi/full/10.1126/sciadv.adi3088 http://doi.org/10.1126/sciadv.adi3088
Xie, X., & Seung, H.S. (2003). Equivalence of backpropagation and Contrastive Hebbian Learning in a layered network. Neural Computation, 15, 441–454. http://www.ncbi.nlm.nih.gov/pubmed/12590814
Yamada, M., Inanobe, A., & Kurachi, Y. (1998). G protein regulation of potassium ion channels. Pharmacological Reviews, 50, 723–757. https://pharmrev.aspetjournals.org/content/50/4/723
Yang, Y., Campbell, D., Huang, K., Wang, M., Cohen, J., & Webb, T. (2025). Emergent Symbolic Mechanisms Support Abstract Reasoning in Large Language Models. http://arxiv.org/abs/2502.20332 http://doi.org/10.48550/arXiv.2502.20332
Yang, K., Gao, S., Li, C., & Li, Y. (2013). Efficient color boundary detection with color-opponent mechanisms. In http://www.cv-foundation.org/openaccess/content_cvpr_2013/html/Yang_Efficient_Color_Boundary_2013_CVPR_paper.html
Yang, Y., & Lisberger, S.G. (2014). Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature, 510, 529–532. https://www.nature.com/articles/nature13282 http://doi.org/10.1038/nature13282
Yang, Y., & Lisberger, S.G. (2014). Role of Plasticity at Different Sites across the Time Course of Cerebellar Motor Learning. Journal of Neuroscience, 34, 7077–7090. https://www.jneurosci.org/content/34/21/7077 http://doi.org/10.1523/JNEUROSCI.0017-14.2014
Yang, Y., & Lisberger, S.G. (2017). Modulation of Complex-Spike Duration and Probability during Cerebellar Motor Learning in Visually Guided Smooth-Pursuit Eye Movements of Monkeys. eNeuro, 4, https://www.eneuro.org/content/4/3/ENEURO.0115-17.2017 http://doi.org/10.1523/ENEURO.0115-17.2017
Yang, Y., & Liu, J. (2022). Structural LTP: Signal transduction, actin cytoskeleton reorganization, and membrane remodeling of dendritic spines. Current Opinion in Neurobiology, 74, 102534. https://www.sciencedirect.com/science/article/pii/S0959438822000289 http://doi.org/10.1016/j.conb.2022.102534
Yartsev, M.M., Hanks, T.D., Yoon, A.M., & Brody, C.D. (2018). Causal contribution and dynamical encoding in the striatum during evidence accumulation. eLife, 7, e34929. https://doi.org/10.7554/eLife.34929 http://doi.org/10.7554/eLife.34929
Yasuda, R., Hayashi, Y., & Hell, J.W. (2022). CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nature Reviews Neuroscience, 23, 666–682. https://www.nature.com/articles/s41583-022-00624-2 http://doi.org/10.1038/s41583-022-00624-2
Yeo, C.H., Hardiman, M.J., & Glickstein, M. (1985). Classical conditioning of the nictitating membrane response of the rabbit. Experimental Brain Research, 60, 114–126. https://doi.org/10.1007/BF00237024 http://doi.org/10.1007/BF00237024
Yin, H.H., Knowlton, B.J., & Balleine, B.W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. The European journal of neuroscience, 19, 181–9. http://www.ncbi.nlm.nih.gov/pubmed/14750976
Yin, H.H., Mulcare, S.P., Hilรกrio, M.R.F., Clouse, E., Holloway, T., Davis, M.I., Hansson, A.C., Lovinger, D.M., & Costa, R.M. (2009). Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature neuroscience, 12, http://www.ncbi.nlm.nih.gov/pubmed/19198605
Yttri, E.A., & Dudman, J.T. (2016). Opponent and bidirectional control of movement velocity in the basal ganglia. Nature, 533(7603), 402–406. http://www.nature.com/articles/nature17639 http://doi.org/10.1038/nature17639
Yttri, E.A., & Dudman, J.T. (2018). A Proposed Circuit Computation in Basal Ganglia: History‐Dependent Gain. Movement Disorders, 33, 704–716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001446/ http://doi.org/10.1002/mds.27321
Yu, C., Smith, L.B., Christensen, M., & Pereira, A. (2007). Two views of the world: Active vision in real-world interaction. In Proceedings of the Annual Meeting of the Cognitive Science Society. https://escholarship.org/content/qt7ms4z979/qt7ms4z979.pdf
Zang, Y., & De Schutter, E. (2019). Climbing Fibers Provide Graded Error Signals in Cerebellar Learning. Frontiers in Systems Neuroscience, 13, https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2019.00046/full http://doi.org/10.3389/fnsys.2019.00046
Zeeuw, C.I.D., Hansel, C., Bian, F., Koekkoek, S.K.E., Alphen, A.M., Linden, D.J., & Oberdick, J. (1998). Expression of a Protein Kinase C Inhibitor in Purkinje Cells Blocks Cerebellar LTD and Adaptation of the Vestibulo-Ocular Reflex. Neuron, 20, 495–508. https://www.cell.com/neuron/abstract/S0896-6273(00)80990-3 http://doi.org/10.1016/S0896-6273(00)80990-3
Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. The Journal of neuroscience : the official journal of the Society for Neuroscience, 16, 2112. http://www.ncbi.nlm.nih.gov/pubmed/8604055
Zhang, J., Barhomi, Y., & Serre, T. (2012). A New Biologically Inspired Color Image Descriptor. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.), Computer Vision – ECCV 2012 (pp. 312–324). Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-642-33715-4_23 http://doi.org/10.1007/978-3-642-33715-4_23
Zhang, W., & Linden, D.J. (2006). Long-Term Depression at the Mossy Fiber–Deep Cerebellar Nucleus Synapse. Journal of Neuroscience, 26, 6935–6944. https://www.jneurosci.org/content/26/26/6935 http://doi.org/10.1523/JNEUROSCI.0784-06.2006
Zhang, X., Wang, J., & Zhu, J. (2016). Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum & Ataxias, 3, 9. https://doi.org/10.1186/s40673-016-0047-1 http://doi.org/10.1186/s40673-016-0047-1
Zhang, K., Yang, Z., Gaffield, M.A., Gross, G.G., Arnold, D.B., & Christie, J.M. (2023). Molecular layer disinhibition unlocks climbing-fiber-instructed motor learning in the cerebellum. 2023.08.04.552059. https://www.biorxiv.org/content/10.1101/2023.08.04.552059v1 http://doi.org/10.1101/2023.08.04.552059
Zheng, Y., Wolf, N., Ranganath, C., O'Reilly, R.C., & McKee, K.L. (2025). Flexible prefrontal control over hippocampal episodic memory for goal-directed generalization. http://arxiv.org/abs/2503.02303 http://doi.org/10.48550/arXiv.2503.02303
Zhu, J., Chen, J., Hu, W., & Zhang, B. (2017). Big Learning with Bayesian methods. National Science Review, 4, 627–651. https://doi.org/10.1093/nsr/nwx044 http://doi.org/10.1093/nsr/nwx044
Zhu, Z., Munhall, A., Shen, K., & Johnson, S.W. (2004). Calcium-dependent subthreshold oscillations determine bursting activity induced by N-methyl-d-aspartate in rat subthalamic neurons in vitro. European Journal of Neuroscience, 19, 1296–1304. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1460-9568.2004.03240.x http://doi.org/10.1111/j.1460-9568.2004.03240.x
Zobeiri, O.A., & Cullen, K.E. (2024). Cerebellar Purkinje cells combine sensory and motor information to predict the sensory consequences of active self-motion in macaques. Nature Communications, 15, 4003. https://www.nature.com/articles/s41467-024-48376-0 http://doi.org/10.1038/s41467-024-48376-0